Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame scientists develop largest developmental proteomic data set for any animal

28.03.2014

Now that the human genome is sequenced, University of Notre Dame researchers are focusing on the study of the proteome, which is the protein content of an organism, tissue or cell.

Bioanalytical chemist Norman Dovichi and molecular biologist Paul Huber have successfully tracked the changing patterns of protein expression during early development of Xenopus laevis, or African clawed frog, embryos. They have developed the largest data set on developmental proteomics for any organism, and have included the single-cell zygote.

Their research has uncovered an unexpected amount of discordance between the levels of messenger RNA (mRNA) and its corresponding protein. Their findings are published in Scientific Reports in an article titled, "Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development."

The Notre Dame team based in the Department of Chemistry and Biochemistry in the College of Science has identified and measured the levels of about 4,000 proteins, which exhibited patterns of expression that reflect key events during early Xenopus development.

... more about:
»Science »Xenopus »chemist »embryos »mRNA »mimic »proteins »proteomic

For example, the appearance of organ- and tissue-specific proteins, such as those found exclusively in cardiac muscle cells, accurately reflects imminent anatomical changes taking place in the embryo. The research could lead to insight into congenital birth defects that result from the misregulation of gene expression.

The research also contradicted a widely held assumption that the levels of mRNA, which encodes proteins, would be directly related to protein levels. While that was true in most cases, there were a surprisingly high number of exceptions, demonstrating that the amounts of a particular protein can be controlled by multiple mechanisms.

Because development takes place in well-defined stages outside the mother, Xenopus is a favored model. Embryogenesis can be easily monitored in real time; fate maps for organ development have been determined and major regulators of these processes have been identified and characterized, providing an abundance of tissue- and organ-specific markers to track embryo formation.

Additionally, embryos develop rapidly, achieving a nearly fully developed nervous system within four days. "It's easy to manipulate the embryos to mimic certain disease states, making Xenopus extremely valuable to biologists," Huber said.

"The collaborative, ground-breaking work of Norm Dovichi, Paul Huber and their team is crucial to helping us understand the complexity of life. We are proud of this important milestone," said Greg Crawford, dean of the College of Science at the University of Notre Dame.

###

Dovichi and Huber co-authored the article with Liangliang Sun, Michelle Bertke, Matthew Champion and Guijie Zhu.

Norm Dovichi | EurekAlert!
Further information:
http://www.nd.edu

Further reports about: Science Xenopus chemist embryos mRNA mimic proteins proteomic

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>