Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame researchers make progress toward a treatment for dangerous allergies

10.10.2013
New research published in the journal Nature Chemical Biology shows that a group of scientists, led by faculty at the University of Notre Dame, has made concrete progress toward the development of the first-ever inhibitory therapeutic for Type I hypersensitive allergic reactions.

"Our allergy inhibition project is innovative and significant because we brought a novel molecular design approach to selectively inhibit mast cell degranulation — the key event in triggering a food allergic response — which has the potential to improve the quality of life for affected patients," said Basar Bilgicer, assistant professor of chemical and biomolecular engineering at Notre Dame and an investigator in the University's Advanced Diagnostics & Therapeutics initiative.

Allergic reactions are caused when a person's immune system reacts to normally harmless substances in the environment. An allergic reaction can be the source of a simple itch or sneezing; however, Type I hypersensitive allergic reactions can go as far as a life-threatening anaphylactic shock. Mast cells, which are a type of white blood cell, function to protect the body from harmful pathogens such as parasites. In Type I hypersensitive allergic conditions, mast cells show a response to otherwise harmless substances (allergens) and result in severe, even potentially lethal, symptoms. The most common examples to Type I hypersensitivity are food allergies, such as to peanuts or shellfish, which affect 15 million Americans and approximately 8 percent of children.

Through the new research, Bilgicer and his group designed a special molecule, called a heterobivalent inhibitor (HBI), which when introduced into a person's bloodstream can, in essence, out-compete allergens like egg or peanut proteins in their race to attach to mast cell receptors.

"Unlike current treatments, such as epinephrine, which help a body endure through an allergic reaction, our HBIs, if introduced into the bloodstream, would actually stop further progression of the allergic reaction from taking place," said Bilgicer.

"We are figuring out the optimum binding sites on the mast cell receptors to attach to, in order to prevent allergens from interacting with them and to prevent the allergic reaction before it even starts in the first place."

The team has demonstrated the effectiveness of their inhibitor molecule on allergic reaction using animal models of allergy. Their next set of targets are a variety of allergens that affect humans — including peanuts, penicillin and dust mites — and they will design HBIs that would be successful inhibitors for each.

The University of Notre Dame's Advanced Diagnostics & Therapeutics initiative creates technologies and tools to combat disease, promote health and safeguard the environment. AD&T's investigators focus on the common purpose of advancing micro- and nanoscale research to improve lives around the world.

Basar Bilgicer | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>