Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame chemists discover new class of antibiotics

10.03.2014

A team of University of Notre Dame researchers led by Mayland Chang and Shahriar Mobashery have discovered a new class of antibiotics to fight bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant bacteria that threaten public health.

Their research is published in the Journal of the American Chemical Society in an article titled "Discovery of a New Class of Non-beta-lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive Antibacterial Activity."

The new class, called oxadiazoles, was discovered in silico (by computer) screening and has shown promise in the treatment of MRSA in mouse models of infection. Researchers who screened 1.2 million compounds found that the oxadiazole inhibits a penicillin-binding protein, PBP2a, and the biosynthesis of the cell wall that enables MRSA to resist other drugs. The oxadiazoles are also effective when taken orally. This is an important feature as there is only one marketed antibiotic for MRSA that can be taken orally.

MRSA has become a global public-health problem since the 1960s because of its resistance to antibiotics. In the United States alone, 278,000 people are hospitalized and 19,000 die each year from infections caused by MRSA. Only three drugs currently are effective treatments, and resistance to each of those drugs already exists.

The researchers have been seeking a solution to MRSA for years. "Professor Mobashery has been working on the mechanisms of resistance in MRSA for a very long time," Chang said. "As we understand what the mechanisms are, we can devise strategies to develop compounds against MRSA."

"Mayland Chang and Shahriar Mobashery's discovery of a class of compounds that combat drug resistant bacteria such as MRSA could save thousands of lives around the world. We are grateful for their leadership and persistence in fighting drug resistance," said Greg Crawford, dean of the College of Science at the University of Notre Dame.

###

Co-authors of the study include Peter O'Daniel, Zhihong Peng, Hualiang Pi, Sebastian Testero, Derong Ding, Edward Spink, Erika Leemans, Marc Boudreau, Takao Yamaguchi, Valerie Schroeder, William Wolter, Leticia Llarrull, Wei Song, Elena Lastochkin, Malika Kumarasiri, Nuno Antunes, Mana Espahbodi, Katerina Lichtenwalter, Mark Suckow, Sergei Vakulenko, Mobashery and Chang, from the Department of Chemistry and Biochemistry, the Freimann Life Sciences Center and the Department of Biological Sciences, all at the University of Notre Dame.

Mayland Chang | EurekAlert!

Further reports about: Discovery MRSA antibiotics chemists compounds drugs mechanisms resistance strategies

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>