Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not of Divided Mind

19.01.2017

Tübingen neuroscientists discover that our brain is capable of mobilising additional resources for difficult tasks even in younger years.

As we get older, our brain mobilises additional capacity whenever it is particularly challenged. According to the current paradigm, the aging brain makes use of areas in both hemispheres, while only using one hemisphere for each task at a younger age.


Brain activity of a younger test subject doing spatial memory tasks – left side: solving a simple task, right side: solving a very difficult task.

Copyright: Axel Lindner

A team of researchers at the department of cognitive neurology at the Hertie Institute for Clinical Brain Research (HIH) led by Dr Axel Lindner has now investigated specifically when this mechanism is engaged. Employing functional magnetic resonance imaging (fMRI), they observed the dorsolateral prefrontal cortex (dlPFC), a brain area responsible for memory tasks. They found that the dlPFC is active in both hemispheres whenever faced with especially difficult tasks – not only in elderly but also in younger people.

For every cognitive task, characteristic brain areas specalised in that task are active. In most cases, these specialised areas are much more active in one hemisphere; language processing, for instance, happens mostly in the left hemisphere. Neuroscience calls this hemispheric division of tasks ‘lateralisation of brain functions’.

According to recent studies, this lateralisation is partly offset in elderly people: memory tasks leading to one-sided activity in young test subjects show both hemispheres as active in older subjects. The current hypothesis is that the brain mitigates its own age-related erosion by drawing on performance reserves in the other hemisphere.

The HIH researchers – with support from the Werner Reichardt Centre for Integrative Neuroscience (CIN) at the University of Tübingen and the German Center for Neurodegenerative Diseases (DZNE) – set out to investigate when exactly this happens. Earlier studies had posed the same tasks to all probands. Maybe younger probands were simply less challenged by the same tasks? Working memory performance varies between individuals and decreases with age.

The Tübingen scientists therefore ensured that all probands received tasks which were subjectively equally difficult, some of them approaching the limits of the probands: repeated memorisation of changing rows of letters, of spatial positions or of complex figures. Using fMRI, the scientists monitored and compared memory activity in both hemispheres of the dlPFC.

The result was surprising: the test subjects were able to solve easy tasks according to expectations, with only the left hemisphere of the dlPFC showing increased activity. For difficult tasks, both hemispheres showed increased activity – however, this occurred not only in elderly subjects, but also in younger. Therefore, temporary enhancement of ‘computing power’ through bilateral operation of otherwise unilaterally active brain areas is not a compensation mechanism of the aging brain.

Offset of lateralisation may have been first observed in elderly people, but this is only because our working memory tends toward weaker performance at old age. It is still an open question why that is the case. Perhaps our memory does not really get weaker as we grow older, but the numbers of individual memories pile up so much that overall performance is impaired, as postulated by the Tübingen linguist Michael Ramscar.

‘Our data rather fits with that hypothesis’, says Melanie Höller-Wallscheid, who conducted the study as part of her doctoral studies. ‘We were never very clear on how the brain is supposed to develop an all-new mechanism as it ages, even though this is practically the current paradigm. Now our study demonstrates that this mechanism is always in place. Younger people just need it more rarely: how often do we try out our cognitive limits, after all? But when we need it, we all have this larger cognitive resource available. Our brain is fundamentally adaptive.’

Original Publication:
Melanie S. Höller-Wallscheid, Peter Thier, Joern K. Pomper, Axel Lindner: Bilateral Recruitment of Prefrontal Cortex in Working Memory Is Associat-ed with Task Demand but Not with Age. Proceedings of the National Academy of Sciences (electronic publication ahead of print).
doi: 10.1073/pnas.1601983114

Contact the author:
PD Dr. Axel Lindner
University of Tübingen
Hertie Institute for Clinical Brain Research
Otfried-Müller-Str. 25
72076 Tübingen
Phone: +49 7071 29-0469
a.lindner@medizin.uni-tuebingen.de

Press contacts:
Dr. Paul Töbelmann
Science Communication and Public Outreach
Werner Reichardt Centre for Integrative Neuroscience (CIN)
Otfried-Müller-Str. 25
72076 Tübingen
Phone: +49 7071 29-89108
paul.toebelmann@cin.uni-tuebingen.de
www.cin.uni-tuebingen.de

Dr. Mareike Kardinal
Head of Communications
Hertie Institute for Clinical Brain Research
Otfried-Müller-Str. 27
72076 Tübingen
Phone: +49 7071 29-88800
Fax: +49 7071 29-25004
mareike.kardinal@medizin.uni-tuebingen.de
www.hih-tuebingen.de

Weitere Informationen:

http://www.hih-tuebingen.de Hertie Institute for Clinical Brain Research
http://www.cin.uni-tuebingen.de Werner Reichardt Centre for Integrative Neuroscience (CIN)
http://www.uni-tuebingen.de University of Tübingen

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>