Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nostrils alternate to process competing odors

24.08.2009
Rice University study finds 'rivalry' between nostrils

When the nose encounters two different scents simultaneously, the brain processes them separately through each nostril in an alternating fashion.

This finding by researchers at Rice University in Houston is the first demonstration of "perceptual rivalry" in the olfactory system. The study was published online today by the journal Current Biology and will appear in the Sept. 29 print edition.

"Our discovery opens up new avenues to explore the workings of the olfactory system and olfactory awareness," said Denise Chen, assistant professor of psychology, who coauthored the research paper with graduate student Wen Zhou.

For the study, 12 volunteers sampled smells from two bottles containing distinctively different odors. One bottle had phenyl ethyl alcohol, which smells like a rose, and the other had n-butanol, which smells like a marker pen. The bottles were fitted with nosepieces so that volunteers could sample both scents simultaneously -- one through each nostril.

During 20 rounds of sampling, all 12 participants experienced switches between smelling predominantly the rose scent and smelling predominantly the marker scent. Some experienced more frequent and drastic switches than others, but there was no predictable pattern of the switch across the whole group of volunteers or within individuals.

Chen said this "binaral rivalry" between the nostrils resembles the rivalry that occurs between other pairs of sensory organs. When the eyes simultaneously view two different images -- one for each eye -- the two images are perceived in alternation, one at a time. And when alternating tones an octave apart are played out of phase to each ear, most people experience a single tone that goes back and forth from ear to ear.

In the laboratory setting in which each nostril simultaneously received a different smell, the participants experienced an "olfactory illusion," she said. "Instead of perceiving a constant mixture of the two smells, they perceive one of the smells, followed by the other, in an alternating fashion, as if the nostrils were competing with one another. Although both smells are equally present, the brain attends to predominantly one of them at a time."

"The binaral rivalry involves adaptations at the peripheral sensory neurons and in the cortex," Chen said. "Our work sets the stage for future studies of this phenomenon so we can learn more about the mechanisms by which we perceive smells."

In binaral rivalry, the tug-of-war between dominance and suppression of the olfactory perception exists only in the mind of the person who smells the odors, while the physical properties of the olfactory stimuli remain unchanged, Chen said. This gives humans the rare opportunity to dissociate olfactory perception and physical stimulation. As such, binaral rivalry may offer a unique window into consciousness and awareness in both healthy and ill people.

Human olfaction is a subject very much in its infancy. Chen said understanding the mechanisms with which people process olfactory information is not only important to basic science, but may also, over the long run, contribute to the assessment and cure of olfactory disorders in patients and, in particular, the elderly.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>