Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nose Knows: Gene Therapy Restores Sense of Smell in Mice

12.09.2012
A team of scientists from Johns Hopkins and other institutions report that restoring tiny, hair-like structures to defective cells in the olfactory system of mice is enough to restore a lost sense of smell.

The results of the experiments were published online last week in Nature Medicine, and are believed to represent the first successful application of gene therapy to restore this function in live mammals.

An expert in olfaction, Randall Reed, Ph.D., professor of molecular biology and genetics and co-director of the Center for Sensory Biology at the Johns Hopkins Institute for Basic Biomedical Sciences, cautions that researchers are still years away from applying the same therapy in people, and that if and when it comes, it will likely be most effective for those who suffer from anosmia (lack of smell) due to inherited genetic disorders.

“But our work has already contributed to a better understanding of the cellular factors involved in anosmia, and that will give us insights into other neurological disorders, as well,” he says.

The mice used in the current study carried a genetic mutation that destroyed the production of a protein critical for the functioning of cilia in the cells responsible for smell, called olfactory sensory neurons. These specialized cells each display several of the protruding, hair-like structures that contain receptors for odorants. Without functional cilia, the cells become a broken link in the chain of events necessary for proper odor detection in the environment, the researchers explained.

Beginning with a common cold virus, which readily infects the cells of the nasal cavity, researchers replaced some of the viral genes with a corrected version of the defective cilia gene. They then infected smelling-impaired mice with the altered virus, delivering the corrected gene to the olfactory neural cells that needed it.

At the cellular level, scientists saw a restoration of proper chemical signaling between nerve cells after the treated mice were stimulated with various odorants. Perhaps even more indicative of their success, Reed says, was the 60 percent increase in body weight that the mice experienced once they could smell their meals, leading to increased appetite. Many people with anosmia lose weight because aromas play a significant part in creating appetite and food enjoyment.

Researchers are optimistic about the broader implications of this work, Reed notes, because cilia are not only important to olfactory cells, but also to cells all over the body, from the kidney to the eye. The fact that they were able to treat live mice with a therapy that restored cilia function in one sensory system suggests that similar techniques could be used to treat cilia disorders elsewhere.

“We also hope this stimulates the olfactory research community to look at anosmia caused by other factors, such as head trauma and degenerative diseases,” says senior author Jeffrey Martens, Ph.D., an associate professor of pharmacology at the University of Michigan. “We know a lot about how this system works – now have to look at how to fix it when it malfunctions.”

In addition to Randall Reed from Johns Hopkins, the paper’s authors include Jeffrey Martens, Jeremy McIntyre, Ariell Joiner, Corey Williams, Paul Jenkins, Dyke McEwen, Lian Zhang and John Escobado from the Martens Lab at the University of Michigan; Erica Davis, I-Chun Tsai and Nicholas Katsanis from Duke University; Aniko Sabo, Donna Muzny and Richard Gibbs from the Baylor College of Medicine; Eric Green and James Mullikin from the National Institutes of Health Intramural Sequencing Center; Bradley Yoder from the University of Alabama-Birmingham; Sophie Thomas and Tania Attié-Bitach from L’Université Paris Descartes; Katarzyna Szymanska and Colin A. Johnson from St. James’s University Hospital in Leeds, UK; and Philip Beales from University College London, UK.

The study was funded by the National Institutes of Health: National Institute on Deafness and Other Communication Disorders (#R01DC009606, F32DC011990, R01DC004553, R01DC008295), National Institute of Diabetes and Digestive and Kidney Diseases (#R01DK75996, R01DK072301, R01DK075972, DK074083), National Institute of Child Health and Human Development (#R01HD042601), and National Eye Institute (#R01EY021872). Additional funding sources included L’Agence Nationale de la Recherche and the European Community’s Seventh Framework Programme.

On the Web:

Article in Nature Medicine: http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.2860.html

Q&A with Randall Reed: http://www.hopkinsmedicine.org/institute_basic
_biomedical_sciences/about_us/scientists/Randall_Reed.html
Reed Lab: http://www.mbg.jhmi.edu/Pages/people/profile.aspx?PID=16

Cathy Kolf | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>