Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Norway spruce genome sequenced

23.05.2013
Swedish scientists have mapped the gene sequence of Norway spruce (the Christmas tree) – a species with huge economic and ecological importance - and that is the largest genome to have ever been mapped. The genome is complex and seven times larger than that of humans. The results have been published in the prestigious journal Nature.
This major research project has been led by Umeå Plant Science Centre (UPSC) in Umeå and the Science for Life Laboratory (SciLifeLab) in Stockholm.

In addition to its scientific interest this new knowledge has immense importance to the forestry industry in many countries.

“Forest tree breeding is now entering a new era, and Sweden has the potential to be in the forefront of development,” says Professor Ove Nilsson from UPSC. “Newer and more effective methods can begin to be used to ensure that the over 200 million tree seedlings planted each year in Sweden are as strong, healthy and well-adapted as possible for both poor and rich soil areas in different parts of the country.”

The scientists have identified about 29,000 functional genes, marginally more than humans have, but the question arises: why is the spruce genome still seven times larger than ours? According to the study an explanation is “genome obesity” caused by extensive repetitive DNA sequences, which have accumulated for several hundred million years of evolutionary history. Other plant and animal species have efficient mechanisms to eliminate such repetitive DNA, but these do not seem to operate so well in conifers.

“It is remarkable that the spruce is doing so well despite this unnecessary genetic load,” says Professor Pär Ingvarsson at UPSC. “Of course, some of this DNA has a function but it seems strange that it would be beneficial to have so very much. This appears to be something special for conifers.”

The greatest challenge in the project has been to get the approximately 20 billion "letters" found in spruce's genetic code into the correct order, rather than obtaining the actual DNA sequences.

“Imagine a library with ten thousand books as thick as the bible, written in a language with only four letters,” explains Professor Stefan Jansson at UPSC. “If someone took one hundred identical copies of each of the ten thousand titles, passed them all through a document shredder and mixed all the shreds, and you then were asked to piece together an accurate copy of each title, you can realize that it can be a bit problematic.”

“We had to customise computers and rewrite many of the computer programmes used in similar studies in order to handle the large amount of DNA sequences,” says Professor Joakim Lundeberg from SciLifeLab. The national data storage system was stretched to the limit, and there were many other practical problems that had to be solved along the way to pull through the project.

“But the timing was optimal; when the new DNA sequencing machines were unpacked at our newly established laboratory, DNA arrived from our model spruce tree. By sequencing and analysing the largest genome in the world so far, we have shown that SciLifeLab has both technical and scientific capacity for research at the highest international level,” concludes Joakim Lundeberg.
About the project:

The project was funded by the Knut and Alice Wallenberg Foundation with the Swedish University of Agricultural Sciences as the main applicant. Scientists from UPSC (Umeå University and Swedish University of Agricultural Sciences) and Science for Life Laboratory (Royal Institute of Technology, Stockholm University and Karolinska Institutet) have participated in the project. Several international leading scientists have also been involved as collaborative partners. The entire project has had a budget of 75 million SEK , in comparison with mapping the human genome which was a significantly higher; 20 billion SEK.
About Umeå Plant Science Centre:

Umeå Plant Science Centre (UPSC) is one of Europe’s strongest research centres in the area of experimental plant biology. The centre consists of two departments, one at Umeå University and the other at the Swedish University of Agricultural Sciences. UPSC has nearly 200 staff members, including approximately 40 research groups. www.upsc.se
About Science for Life Laboratory:

Science for Life Laboratory (SciLifeLab) was established in 2010 and is a centre for large-scale biosciences with the focus on health and environmental research. The centre combines advanced technical know-how and state-of-the art equipment with a broad knowledge of translational medicine and molecular bioscience. Platforms in genomics, comparative genetics, proteomics, functional biology, bioimaging and functional genomics are complemented with research communities (programmes) in biology, medicine and environmental sciences. SciLifeLab is collaboration between four universities: Stockholm University, Karolinska Institutet, Royal Institute of Technology (KTH) and Uppsala University.
www.scilifelab.se
Original publication:

Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature (2013). Doi:1038/nature12211
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12211.html
Photos, film sequence and more reading:

Ten photos: http://www.exigus.se/paket9963/29169e1508f36aa4af114483bc20910f.html

Captions: http://www.teknat.umu.se/pressinformation/bildtexter-captions

Film sequence: https://vimeo.com/umu/spruce

Article: Gigantic spruce genome sequenced
For more information, please contact:

Pär Ingvarsson, professor
Umeå Plant Science Centre
Umeå University
Phone: +46-70-848 59 77
E-mail: par.ingvarsson@emg.umu.se

Stefan Jansson, professor
Umeå Plant Science Centre
Umeå University
Phone: +46-70-677 23 31
E-mail: stefan.jansson@umu.se

Joakim Lundeberg, Professor
Science for Life Laboratory
School of Biotechnology, KTH Royal Institute of Technology
Phone: +46-8-52481469
E-mail: joakim.lundeberg@scilifelab.se

Ove Nilsson, professor
Umeå Plant Science Centre
Swedish University of Agricultural Sciences
Phone: 070-286 90 82
E-mail: ove.nilsson@slu.se

Ingrid Söderbergh | idw
Further information:
http://www.teknat.umu.se/english/about-the-faculty/news/newsdetailpage//the-norway-spruce-genome-sequenced.cid216079

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>