Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Norway spruce genome sequenced

23.05.2013
Swedish scientists have mapped the gene sequence of Norway spruce (the Christmas tree) – a species with huge economic and ecological importance - and that is the largest genome to have ever been mapped. The genome is complex and seven times larger than that of humans. The results have been published in the prestigious journal Nature.
This major research project has been led by Umeå Plant Science Centre (UPSC) in Umeå and the Science for Life Laboratory (SciLifeLab) in Stockholm.

In addition to its scientific interest this new knowledge has immense importance to the forestry industry in many countries.

“Forest tree breeding is now entering a new era, and Sweden has the potential to be in the forefront of development,” says Professor Ove Nilsson from UPSC. “Newer and more effective methods can begin to be used to ensure that the over 200 million tree seedlings planted each year in Sweden are as strong, healthy and well-adapted as possible for both poor and rich soil areas in different parts of the country.”

The scientists have identified about 29,000 functional genes, marginally more than humans have, but the question arises: why is the spruce genome still seven times larger than ours? According to the study an explanation is “genome obesity” caused by extensive repetitive DNA sequences, which have accumulated for several hundred million years of evolutionary history. Other plant and animal species have efficient mechanisms to eliminate such repetitive DNA, but these do not seem to operate so well in conifers.

“It is remarkable that the spruce is doing so well despite this unnecessary genetic load,” says Professor Pär Ingvarsson at UPSC. “Of course, some of this DNA has a function but it seems strange that it would be beneficial to have so very much. This appears to be something special for conifers.”

The greatest challenge in the project has been to get the approximately 20 billion "letters" found in spruce's genetic code into the correct order, rather than obtaining the actual DNA sequences.

“Imagine a library with ten thousand books as thick as the bible, written in a language with only four letters,” explains Professor Stefan Jansson at UPSC. “If someone took one hundred identical copies of each of the ten thousand titles, passed them all through a document shredder and mixed all the shreds, and you then were asked to piece together an accurate copy of each title, you can realize that it can be a bit problematic.”

“We had to customise computers and rewrite many of the computer programmes used in similar studies in order to handle the large amount of DNA sequences,” says Professor Joakim Lundeberg from SciLifeLab. The national data storage system was stretched to the limit, and there were many other practical problems that had to be solved along the way to pull through the project.

“But the timing was optimal; when the new DNA sequencing machines were unpacked at our newly established laboratory, DNA arrived from our model spruce tree. By sequencing and analysing the largest genome in the world so far, we have shown that SciLifeLab has both technical and scientific capacity for research at the highest international level,” concludes Joakim Lundeberg.
About the project:

The project was funded by the Knut and Alice Wallenberg Foundation with the Swedish University of Agricultural Sciences as the main applicant. Scientists from UPSC (Umeå University and Swedish University of Agricultural Sciences) and Science for Life Laboratory (Royal Institute of Technology, Stockholm University and Karolinska Institutet) have participated in the project. Several international leading scientists have also been involved as collaborative partners. The entire project has had a budget of 75 million SEK , in comparison with mapping the human genome which was a significantly higher; 20 billion SEK.
About Umeå Plant Science Centre:

Umeå Plant Science Centre (UPSC) is one of Europe’s strongest research centres in the area of experimental plant biology. The centre consists of two departments, one at Umeå University and the other at the Swedish University of Agricultural Sciences. UPSC has nearly 200 staff members, including approximately 40 research groups. www.upsc.se
About Science for Life Laboratory:

Science for Life Laboratory (SciLifeLab) was established in 2010 and is a centre for large-scale biosciences with the focus on health and environmental research. The centre combines advanced technical know-how and state-of-the art equipment with a broad knowledge of translational medicine and molecular bioscience. Platforms in genomics, comparative genetics, proteomics, functional biology, bioimaging and functional genomics are complemented with research communities (programmes) in biology, medicine and environmental sciences. SciLifeLab is collaboration between four universities: Stockholm University, Karolinska Institutet, Royal Institute of Technology (KTH) and Uppsala University.
www.scilifelab.se
Original publication:

Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature (2013). Doi:1038/nature12211
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12211.html
Photos, film sequence and more reading:

Ten photos: http://www.exigus.se/paket9963/29169e1508f36aa4af114483bc20910f.html

Captions: http://www.teknat.umu.se/pressinformation/bildtexter-captions

Film sequence: https://vimeo.com/umu/spruce

Article: Gigantic spruce genome sequenced
For more information, please contact:

Pär Ingvarsson, professor
Umeå Plant Science Centre
Umeå University
Phone: +46-70-848 59 77
E-mail: par.ingvarsson@emg.umu.se

Stefan Jansson, professor
Umeå Plant Science Centre
Umeå University
Phone: +46-70-677 23 31
E-mail: stefan.jansson@umu.se

Joakim Lundeberg, Professor
Science for Life Laboratory
School of Biotechnology, KTH Royal Institute of Technology
Phone: +46-8-52481469
E-mail: joakim.lundeberg@scilifelab.se

Ove Nilsson, professor
Umeå Plant Science Centre
Swedish University of Agricultural Sciences
Phone: 070-286 90 82
E-mail: ove.nilsson@slu.se

Ingrid Söderbergh | idw
Further information:
http://www.teknat.umu.se/english/about-the-faculty/news/newsdetailpage//the-norway-spruce-genome-sequenced.cid216079

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>