Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern Biologist Receives $5.5 Million NIH Grant to Study Tolerant Bacteria

28.09.2009
Northeastern University biologist Kim Lewis has received a $5.5 million grant from the National Institutes of Health (NIH) to investigate why antibiotics are not effective for certain infectious diseases.

The five-year project, part of the NIH Director’s Transformative Program (T-R01), will focus on three types of disease-producing bacteria to determine how dormant subpopulations of these microorganisms survive, re-emerge and re-infect after antibiotic treatments.

Lewis is one of 42 recipients of the T-R01 grants, a set of NIH Common Fund grants that allow scientists to propose bold, new research ideas whose pursuit may require significant resources. The grants do not have budget caps and do not require applicants to submit preliminary results.

"The appeal of the …T-R01 program is that investigators are encouraged to challenge the status quo with innovative ideas, while being given the necessary resources to test them," said NIH Director Francis S. Collins.

Lewis and his team have discovered that pathogens responsible for chronic infections form small populations of dormant cells, known as persister cells, that are not killed by antibiotics. When antibiotic treatment ceases, persister cells grow and repopulate, causing relapse.

“We are investigating the molecular mechanism responsible for the formation of dormant cells that lead to antibiotic tolerance,” said Lewis, who heads the Antimicrobial Discovery Center at Northeastern. “The goal of this research is to inform the future of drug discovery, so that these currently untreatable infections can be cured.”

The research will focus on what Lewis calls the super persister phenomenon, where mutant forms of the pathogen produce more persister cells. Currently, clinical microbiology laboratories measure only the presence of active bacteria, not dormant persister cells.

“I hope that our work will change clinical lab practices to include tests that can detect dormant cells,” said Lewis. “These tests are available for use now and hold significant potential for better treating bacterial infections.”

The planned research will help identify therapies for infections that are often untreatable, such as cystic fibrosis, tuberculosis and wounds that do not heal.

The NIH awarded 115 grants, totaling $348 million, through the three innovative research programs supported by the NIH Common Fund’s Roadmap for Medical Research: the NIH Director’s Transformative R01 (T-R01) Awards, Pioneer Awards, and New Innovator Awards. The Common Fund, enacted into law by Congress through the 2006 NIH Reform Act, supports cross-cutting, trans-NIH programs with a particular emphasis on innovation and risk taking.

Jenny Catherine Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>