Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How nonstick bugs evade natural fly paper

12.08.2008
There are few things more irritating than a fly buzzing around the house. South Africans have an unconventional solution to the problem.

They hang up a bunch of Roridula gorgonias leaves. Attracted to the shiny adhesive droplets on the leaf's hairs, the hapless pest is soon trapped by the natural flypaper. However, this is not the end of the story.

Each R. gorgonias plant is home to a population of Pameridea roridulae (mirid bugs), which dine on the trapped insects. Yet the mirid bugs successfully evade their host's sticky clutches. Curious to find out how, Dagmar Voigt and Stanislav Gorb from the Max-Planck Institute for Metals Research, Germany, decided to take a look at the apparently non-stick bugs to see how they elude R. gorgonias' grasp and publish their results in The Journal of Experimental Biology on August 8 2008 at http://jeb.biologists.org/

But how could the team get their hands on R. gorgonias plants complete with their own private mirid bug colony so far from the plant's home? 'Fortunately there are a few R. gorgonias enthusiasts in Germany' says Voigt, and after contacting Klaus Keller in Augsburg, he agreed to supply the team with the hairy plants and their residents.

Back in their Stuttgart lab, Voigt and Gorb decided to test how non-stick mirid bugs really are. Wrapping a bug in a leaf the team were amazed when they unrolled it and 'the bug jumped up and ran away!' says Voigt. The bug was completely non-stick. Next the team checked the mirid bug's surface by pressing a bug against a glass slide and looking at the slide under a microscope to see if they were covered in a special glue-proof coating. The bugs seemed to be coated in a greasy fluid. Voigt explains that all bugs are covered in a greasy layer, so what made the mirid bug's surface more non-stick than other insect coatings?

Flash freezing the bugs to ?°C, Voigt and Gorb took a high-resolution look at the insect's coating with a cryo-scanning electron microscope (cryo-SEM). The mirid bug's coating was 30 times thicker than the blowfly they compared it with. But how was this extra thick coating protecting the mirid bugs? Did it come loose when contacted by adhesive? Or was the greasy coating somehow disrupting the glue's adhesive powers?

Touching a sticky hair against a piece of mirid bug cuticle and looking at it with cryo-SEM, the team could see that the glue seemed to run like a fluid over the thick greasy surface. However when they looked at a R. gorgonias hair in contact with a section of blowfly cuticle, the glue formed a discrete blob that looked like a gel with well-defined edges. The mirid bug's greasy coating seems to disrupt the glue in some way, preventing it from adhering to the insect's surface.

Finally, the duo measured how strongly the glue became attached to various insects' surfaces. Having removed the mirid bug's protective layer by washing in cold chloroform, the team found that the glue stuck as strongly to the mirid bugs as to other insects, with the glue stretching to produce filaments as long as 5·cm. But when they successfully attached glue droplets to unwashed mirid bug cuticles, the cuticles easily broke free from the glue, rarely forming filaments more than 1.5·cm long. Voigt suspects that insect victims eventually exhaust themselves, fighting against the adhesive filaments.

Voigt and Gorb are keen to understand more about the mechanism that keeps P. roridulae roaming free, while other insects succumb to the glue that mirid bugs simply shrug off.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>