Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How nonstick bugs evade natural fly paper

12.08.2008
There are few things more irritating than a fly buzzing around the house. South Africans have an unconventional solution to the problem.

They hang up a bunch of Roridula gorgonias leaves. Attracted to the shiny adhesive droplets on the leaf's hairs, the hapless pest is soon trapped by the natural flypaper. However, this is not the end of the story.

Each R. gorgonias plant is home to a population of Pameridea roridulae (mirid bugs), which dine on the trapped insects. Yet the mirid bugs successfully evade their host's sticky clutches. Curious to find out how, Dagmar Voigt and Stanislav Gorb from the Max-Planck Institute for Metals Research, Germany, decided to take a look at the apparently non-stick bugs to see how they elude R. gorgonias' grasp and publish their results in The Journal of Experimental Biology on August 8 2008 at http://jeb.biologists.org/

But how could the team get their hands on R. gorgonias plants complete with their own private mirid bug colony so far from the plant's home? 'Fortunately there are a few R. gorgonias enthusiasts in Germany' says Voigt, and after contacting Klaus Keller in Augsburg, he agreed to supply the team with the hairy plants and their residents.

Back in their Stuttgart lab, Voigt and Gorb decided to test how non-stick mirid bugs really are. Wrapping a bug in a leaf the team were amazed when they unrolled it and 'the bug jumped up and ran away!' says Voigt. The bug was completely non-stick. Next the team checked the mirid bug's surface by pressing a bug against a glass slide and looking at the slide under a microscope to see if they were covered in a special glue-proof coating. The bugs seemed to be coated in a greasy fluid. Voigt explains that all bugs are covered in a greasy layer, so what made the mirid bug's surface more non-stick than other insect coatings?

Flash freezing the bugs to ?°C, Voigt and Gorb took a high-resolution look at the insect's coating with a cryo-scanning electron microscope (cryo-SEM). The mirid bug's coating was 30 times thicker than the blowfly they compared it with. But how was this extra thick coating protecting the mirid bugs? Did it come loose when contacted by adhesive? Or was the greasy coating somehow disrupting the glue's adhesive powers?

Touching a sticky hair against a piece of mirid bug cuticle and looking at it with cryo-SEM, the team could see that the glue seemed to run like a fluid over the thick greasy surface. However when they looked at a R. gorgonias hair in contact with a section of blowfly cuticle, the glue formed a discrete blob that looked like a gel with well-defined edges. The mirid bug's greasy coating seems to disrupt the glue in some way, preventing it from adhering to the insect's surface.

Finally, the duo measured how strongly the glue became attached to various insects' surfaces. Having removed the mirid bug's protective layer by washing in cold chloroform, the team found that the glue stuck as strongly to the mirid bugs as to other insects, with the glue stretching to produce filaments as long as 5·cm. But when they successfully attached glue droplets to unwashed mirid bug cuticles, the cuticles easily broke free from the glue, rarely forming filaments more than 1.5·cm long. Voigt suspects that insect victims eventually exhaust themselves, fighting against the adhesive filaments.

Voigt and Gorb are keen to understand more about the mechanism that keeps P. roridulae roaming free, while other insects succumb to the glue that mirid bugs simply shrug off.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>