Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents

26.07.2010
Formation of new blood vessels, also known as angiogenesis, is crucial for sustained tumor growth and cancer metastasis.

Recently, clinically available therapies to suppress the growth of these vessels have been available to improve patient survival in some cancer types. Accurate detection and quantification of blood vessel growth using nonsurgical methods would greatly complement current therapies and allow physicians to quickly assess treatment regimens and adjust them as necessary.

In the work published in the August issue of Experimental Biology and Medicine, Kessinger and coworkers have incorporated nanotechnology, material science, and the clinical imaging modality MRI, to create a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. The work was carried out by Chase Kessinger, as part of his PhD thesis in cancer molecular imaging, working together with Jinming Gao and other colleagues, at the University of Texas Southwestern Medical Center at Dallas.

Dr. Gao stated "Imaging tumor angiogenesis is important in early detection, tumor stratification and post-therapy assessment of antiangiogenic drugs. Current clinical modality for angiogenesis imaging utilizes dynamic contrast enhancement MRI by small molecular contrast agents. The method is based on the measurement of permeability of the contrast probes in well-established solid tumors and is not very specific to detect the early on-set of vessel formation. The dual functional nanoprobes aim to image angiogenesis-specific tumor markers that are overly expressed in the tumor vasculature during the early phase of angiogenesis."

Together, the research team relied on nanotechnology and established super paramagnetic micellar nanoprobes (50-70 nm in diameter) with greatly improved MRI sensitivity over conventional small molecular agents. The nanoprobe surface was functionalized with integrins that are a cyclic peptide that can specifically bind to overexpressed on the tumor endothelial cells. The nanoprobes also had a fluorescent moiety used for the validation of targeted delivery to the tumor endothelial cells. Studies in cancer cells validated the increased uptake of nanoprobes compared to non-targeted-nanoparticles. In collaboration with Dr. Masaya Takahashi and coworkers in the Advanced Imaging Research Center at UT Southwestern Medical Center, the research team employed a 3D high resolution acquisition method to visualize the accumulation of the micelle nanoprobes in tumors.

Dr. Gao said "Conventional image analysis of angiogenesis relies on the evaluation of 'hot spot' densities in 2D images. The 3D high resolution method allowed for the connection of the isolated 'hot spots' in 2D slices into 3D network structures, which greatly improves the accuracy of vessel identification and quantification."

In preclinical animal tumor models, MR imaging of the targeted contrast probes yielded vascularized network structures in 3D tumor images. The enhanced visualization allowed for a more accurate quantification of tumor angiogenesis. The results showed significant increase of contrast specificity of angiogenic vessels by the targeted nanoprobes over non-targeted micelles. These targeted nanoprobes may provide a useful contrast probe design for the clinical diagnosis of tumor angiogenesis.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "Kessinger et al working at the interface of nanotechnology, material science, and the clinical imaging modality MRI have created a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. This should be an important tool for clinical observation of tumor angiogenesis".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. Jinming Gao | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>