Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive genetic test for Down syndrome and Edwards syndrome highly accurate

06.06.2012
New study published in American Journal of Obstetrics and Gynecology

Current screening strategies for Down syndrome, caused by fetal trisomy 21 (T21), and Edwards syndrome, caused by fetal trisomy 18 (T18), have false positive rates of 2 to 3%, and false negative rates of 5% or higher. Positive screening results must be confirmed by amniocentesis or chorionic villus sampling, which carry a fetal loss rate of approximately 1 in 300 procedures.

Now an international, multicenter cohort study finds that a genetic test to screen for trisomy 21 or 18 from a maternal blood sample is almost 100% accurate. The results of the study are published online in the American Journal of Obstetrics and Gynecology.

The trial evaluated a novel assay known as Digital Analysis of Selected Regions (DANSR) that analyzes fetal cell-free DNA, small DNA fragments which circulate in maternal blood. Unlike similar tests that analyze DNA from the entire genome, DANSR analyzes only the chromosomes under investigation for a more efficient and less expensive process. The results are evaluated with a novel analysis algorithm, the Fetal-fraction Optimized Risk of Trisomy Evaluation (FORTE), which considers age-related risks and the percentage of fetal DNA in the sample to provide an individualized risk score for trisomy detection.

A total of 4,002 pregnant women from the United States, the Netherlands, and Sweden were enrolled in the NICE (Non-Invasive Chromosomal Evaluation) study. The mean maternal age was 34.3 years and the cohort was racially and ethnically diverse. Blood samples were taken before the women underwent invasive testing for any indication, and 774 samples were excluded prior to analysis. Of the 3,228 samples that underwent analysis, 57 cases were excluded due to low fetal cfDNA in the sample and 91 samples were excluded due to failure of the assay. The classification of samples as High Risk or Low Risk using the DANSR and FORTE method was compared with the results from amniocentesis and CVS.

The DANSR and FORTE method identified 100% of the 81 T21 cases as High Risk, and there was one false positive among the 2,888 normal cases, for a false-positive rate of 0.03%. Of the 38 T18 cases, 37 were classified as High Risk and there were 2 false positives among the 2,888 normal cases, for a sensitivity of 97.4% and a false positive rate of 0.07%.

Prior studies of cfDNA have been case-control studies, comparing detection in subjects identified with T21 or T18, to a selected group of those with normal karyotypes. The current study included a large cohort of subjects undergoing invasive prenatal diagnosis. This allowed the researchers to assess the potential impact of other complex and unusual abnormalities on cfDNA test results. Overall, the presence of other chromosomal variants did not interfere with the detection of T21 or T18. While the study included primarily high-risk women, all women undergoing invasive prenatal diagnosis for any indication were eligible, so the cohort represents a broader population than reported in previous studies.

"The improvement in sequencing efficiency achieved by the DANSR platform provides a more affordable, scalable approach to cfDNA analysis with high throughput and potential for widespread clinical utility," says lead investigator Mary E. Norton, MD, director of perinatal research, Lucile Packard Children's Hospital at Stanford University. "Cell-free DNA offers high accuracy with a single blood test. It is potentially suitable as a replacement for current, relatively inefficient aneuploidy screening."

Francesca Costanzo | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: DNA DNA fragment Evaluation Forte Gynecology Noninvasive Obstetrics Risk T18 T21

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>