Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noncoding RNAs alter yeast phenotypes in a site-specific manner

15.02.2012
Personal change can redefine or even save your life—especially if you are one of a hundred yeast cell clones clinging to the skin of a grape that falls from a sun-drenched vine into a stagnant puddle below.

By altering which genes are expressed, cells with identical genomes like these yeast clones are able to survive in new environments or even perform different roles within a multicellular organism.

Changes in gene expression can occur in a multitude of ways, but a team of scientists from Whitehead Institute and other institutions has used single-cell imaging and computational approaches, along with more traditional molecular biology techniques, to demonstrate for the first time that brewer's yeast (Saccharomyces cerevisiae) cells rely on two competing long intergenic noncoding RNAs (ncRNAs) as a location-dependent switch to toggle between a sticky and a non-sticky form.

"This validates the observations from a previous paper in the Proceedings of the National Academy of Sciences (PNAS) and provides a new way of looking at the process of gene expression," says Whitehead Founding Member Gerald Fink.

The switch turns on and off the FLO11 gene, which determines whether a yeast cell exists in a free-floating form or an alternative form that sticks to other cells and colonizes substrates. In fungal pathogens such as Candida albicans, genes related to FLO11 allow the invaders to form dangerous biofilms that stick to catheters and other medical devices.

This FLO11 switch is composed of two ncRNAs encoded upstream of the FLO11 promoter, a section of DNA that acts as a docking site for transcription factors that increase or repress FLO11's expression. Although noncoding RNAs constitute the vast majority of RNAs, they do not produce proteins but instead play various mechanistic roles, including modifying chromatin, enhancing or repressing transcription, and promoting messenger RNA (mRNA) degradation, to affect a cell's gene expression.

In the earlier PNAS paper, Stacie Bumgarner, then a Fink lab graduate student, implicated two upstream ncRNAs, Interfering Crick RNA (ICR1) and Promoting Watson RNA (PWR1), in FLO11 expression. But the techniques available to her at the time lacked the resolution required to observe these ncRNAs at the level of the single cell. Most traditional molecular biology techniques that assay RNA expression generate data that provides only a glimpse of the average RNA transcript levels across a population of cells. But because populations of yeast contain some cells that are active and others that are inactive for FLO11 transcription at the same time, single-cell resolution was required to probe deeply the role of the ncRNAs ICR1 and PWR1 in regulating FLO11 expression.

In collaboration with scientists at MIT and the Broad Institute, Bumgarner recently analyzed the RNA contents of thousands of individual yeast cells to see how these two ncRNAs affect FLO11 production in each of the cells. Their work is published in the February 24 issue of the journal Molecular Cell.

"In a single cell, one can visualize an individual mRNA molecule and count the total number of each of these non-coding RNA species in every cell in the population," says Gregor Neuert, co-first-author of the Molecular Cell paper and a postdoctoral researcher in the lab of MIT physics professor Alexander van Oudenaarden. "By investigating single-cells, one gains detailed insight into gene regulation which goes beyond the average RNA expression measured on population of cells."

Instead of finding the average number of FLO11, ICR1, and PWR1 mRNAs for the entire population, Bumgarner and Neuert could visualize how much variation occurred between cells, from cells with no copies of a particular RNA to cells with multiple copies of that RNA.

Using this data, Bumgarner and colleagues formulated a model for a location-dependent switch wherein the ncRNAs use their own transcription to turn FLO11 on and off.

"It's not that the ncRNAs, as RNA products themselves, do something—it's the act of transcription in that particular site, so the site matters," says Bumgarner, a co-first-author of the Molecular Cell article. "You can kind of imagine the DNA as a railroad track, and the transcriptional machinery as a train moving down the track. The way we understand it, the train moving down the track is tossing off all of the transcription factors sitting on the DNA."

In Bumgarner's model, when ICR1 is transcribed, its transcription machinery knocks off any transcription factors from the FLO11 promoter, effectively stopping FLO11's transcription and resetting its promoter. To ultimately promote FLO11 transcription, PWR1 runs ICR1's transcription machinery off the DNA, thereby preventing ICR1 from clearing the FLO11 promoter.

"These noncoding RNAs are unusual, because to the best of our knowledge, they act only on the DNA strand that they're from," says Fink. "In many of the other systems that people have identified, the noncoding RNAs seem to act all over the place in the genome."

This work was supported by the National Institutes of Health (NIH), the National Science Foundation (NSF), and the Deutsche Forschungsgemeinschaft (DFG).

Written by Nicole Giese Rura

Gerald Fink's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Single-Cell Analysis Reveals that Noncoding RNAs Contribute to Clonal Heterogeneity by Modulating Transcription Factor Recruitment"

Molecular Cell, February 24, 2012.

Stacie L. Bumgarner (1,5), Gregor Neuert (2,5), Benjamin F. Voight (3,4), Anna Symbor-Nagrabska (1), Paula Grisafi (1), Alexander van Oudenaarden (2), and Gerald R. Fink (1).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
2. Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
3. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
4. Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA

5. These authors contributed equally to this work.

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>