Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Non-destructive testing methods cannot securely expose fake art


Analysis methods are only capable of clearly detecting fakes when non-anachronistic materials are detected in artefacts. However, if the forgers have used substances whose contemporary use is described, for example, historical paper is used for printing and painting in the forgery of a book, materials science cannot provide evidence of a forgery.

This happened in the scientific investigation of the “star messenger”, Sidéreus Nuncius, a 60-page study from 1610 with supposedly hand-painted Moon illustrations by Galileo Galilei. The volume emerged in 2005 in the New York antiquarian bookshop Martayan-Lan and was regarded as a sensation. Today the book is known to be a fake.

"Material analysis is only capable of unmasking a fraud when the forger makes use of materials which were used only after the date of origin of the supposed original," says Oliver Hahn, head of the Division of Arts and Cultural Analysis at the BAM Federal Institute for Materials Research and Testing and co-author of the third Galileo volume with the title:

A GALILEO FORGERY. UNMASKING THE NEW YORK SIDEREUS NUNCIUS. In this third volume to be published on the 450th anniversary of Galileo Galilei (15 Feb.1564 – 29 Dec. 1641), the Galilei team of researchers, composed of experts from the fields of art, books, science, materials science and restoration history, correct their own results of the first two volumes.

Faced with the statement that this Sidéreus Nuncius copy is a fake, BAM have re-examined their data from previous studies and supplemented them with further tests on the paper and printer's ink. These tests were carried out according to previous measurement campaigns, with the requirement that no physical sampling was made.

"We were of course aware when performing the measurements that non-destructive tests can provide less accurate findings than methods based on sampling. But the book was still considered unique and was supposed to remain untouched,." says Hahn.

The New York Sidéreus Nuncius was not the only item tested by the BAM research team but also contemporary comparative pieces. The most important piece was the Sidéreus Nuncius of Graz, which is considered to be an authentic object.

The researchers tested the chemical composition of the paper and the printer’s ink using various non-destructive spectroscopic methods. The measurement results from the forgery (New York), and the original (Graz) showed none or only a slight difference, which makes the evaluation of authenticity very hard.

Although the X-ray fluorescence analysis of the printer’s ink shows slight differences in the elemental composition, this is no proof that the printer’s ink in the New York copy is a modern preparation. Both printer‘s inks are chiefly composed of organic materials. A non-destructive analysis of printer's ink, i.e. a substance composed of a binder and elemental carbon, is not sufficiently conclusive at the current state of science and technology.

Another opportunity to prove the authenticity of the volume is to determine the age of the paper and the printer's ink. The method of choice is the familiar C14 method. It is based on the fact that the three carbon isotopes 12C, 13C and 14C are bound in dead organic materials such as paper and printer's ink and the number of radioactive 14C atoms decreases according to the law of radioactive decay. The older the material, the lower the measured radioactivity. But even this method requires samples to be taken, which of course had to be avoided in the tests.

The investigation by the BAM Sidéreus Nuncius experts showed that the proof of authenticity of a cultural asset is not easy, especially if the counterfeiters have used contemporary materials.

Dr. rer. nat. Oliver Hahn
Department 4 Material and Environment

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Arts BAM Contact Galileo accurate composition findings materials measurement pieces sampling showed volume

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>