Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Nodal gene family keeps the heart in the right (asymmetric) place

03.11.2008
GPEARI / MCTES - Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

Asymmetry is crucial for the heart proper functioning, and now, scientists from the Institute Gulbenkian of Science in Portugal and Harvard University, have discovered that a family of genes, called Nodal, is crucial determining this asymmetry by controlling the speed and direction of the heart muscle cells during embryonic development. The finding, by helping to understand how the heart develops, is a step closer to intervene and is of particular importance if we consider that problems in heart asymmetry are the main cause of heart congenital diseases that can affect as much as 8 out of 1000 newborns. The research will appear in a special December issue of the journal Development Dynamics 1 dedicated to left-right asymmetry development.

At first glance, the left and right sides of our bodies are identical to one-another. Inside, however, it is quite a different story and organ asymmetry is believed to improve not only the packaging of the organs, but also their proper functioning. The normal disposition of internal organs and structures, which is conserved within vertebrates, is called situs solitus. Alterations of this state include full mirror-reversal organ disposition- a pathology made famous by news of people stabbed in the heart just to discover that their heart was in fact on the opposite side of the body - or cases where individuals have two right or two left sides. But, despite the fact that most alterations in the normal positioning of human organs originate severe medical conditions, very little is actually known about the events behind this type of development. As such, to understand them is not only a fundamental question of Developmental Biology but also highly relevant for human health. This is of particular importance with the heart, which is incredible susceptible to any changes in its normal asymmetry, as the high mortality and disease rates in patients with congenital heart defects so clearly demonstrate.

With this in mind Maria Ines Medeiros de Campos-Baptista and Alexander F. Schier from the Institute Gulbenkian of Science (Lisbon, Portugal) and the Harvard University (Cambridge, USA) and colleagues decided to analyse the expression of the Nodal gene family – which has been linked to left-right axis determination in vertebrates - during the development of zebrafish heart.

Genes linked to asymmetric development are active in the embryo very early during development and only on one side and in fact, the researchers found that some Nodal were expressed at the onset of asymmetry, on left side of the embryo and even co-localizing with heart markers supporting the idea that this family was in fact involved in the asymmetric development of the heart.

To investigate this further Campos-Baptista, Schier and colleagues used a powerful 4D microscope technique that allows to follow individual cells, to film, in real time, the heart development of zebrafish embryos that have been modified to express green fluorescent protein (GFP) in their heart muscle cells (or cardiomyocytes). The idea was that with this marker - together with the fact that zebrafish embryos are transparent - it was possible to track of individual cardiomyocytes as the heart developed to determine the importance of Nodal genes in this development. By comparing animals with or without functional Nodal, the researchers found that these genes regulated the speed and direction of cardiomyocytes, and, when lacking, led to slower and randomly moving cardiomyocytes that losing their asymmetric behaviour, go and form a symmetrically positioned heart (so localised on the body midline).

Nevertheless, although problems in the Nodal genes do affect heart positioning, the fact that this organ is still formed and the organism is viable – although probably not too healthy - reveals that other independent mechanisms, regulated by other genes, affect the same development.

In conclusion, Campos-Baptista, Schier and colleagues’ results show that the movement of individual cardiomyocytes is the determining force behind heart morphogenesis, and that the Nodal genes, by controlling the speed and direction of individual heart muscle cells, are in fact responsible for the asymmetric formation of the heart

“The next step - according to Ines Campos-Baptista, a Portuguese researcher and the first author of the article - will be to identify other genes this time behind the particular movements of the cardiac cells, such as those linked to the cell skeleton, etc. Identifying these will be crucial to fully understand heart asymmetric formation and - since Nodal also plays a role in this developmental of other organs - it will also shed light on the development of many other internal organs such as the pancreas, gut, lungs, etc.”

Campos-Baptista, Schier and colleagues’ findings are important for a better understanding of the mechanism behind embryonic development., specifically of the heart, and, as such, can take us a little closer to one day to be able, not only of preventing heart congenital anomalies, but also of being able to grow our own heart tissues. Although that time is still a long, long way away.

Piece by Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www3.interscience.wiley.com/journal/117927935/grouphome/home.html
http://www.mcb.harvard.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>