Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Nodal gene family keeps the heart in the right (asymmetric) place

03.11.2008
GPEARI / MCTES - Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

Asymmetry is crucial for the heart proper functioning, and now, scientists from the Institute Gulbenkian of Science in Portugal and Harvard University, have discovered that a family of genes, called Nodal, is crucial determining this asymmetry by controlling the speed and direction of the heart muscle cells during embryonic development. The finding, by helping to understand how the heart develops, is a step closer to intervene and is of particular importance if we consider that problems in heart asymmetry are the main cause of heart congenital diseases that can affect as much as 8 out of 1000 newborns. The research will appear in a special December issue of the journal Development Dynamics 1 dedicated to left-right asymmetry development.

At first glance, the left and right sides of our bodies are identical to one-another. Inside, however, it is quite a different story and organ asymmetry is believed to improve not only the packaging of the organs, but also their proper functioning. The normal disposition of internal organs and structures, which is conserved within vertebrates, is called situs solitus. Alterations of this state include full mirror-reversal organ disposition- a pathology made famous by news of people stabbed in the heart just to discover that their heart was in fact on the opposite side of the body - or cases where individuals have two right or two left sides. But, despite the fact that most alterations in the normal positioning of human organs originate severe medical conditions, very little is actually known about the events behind this type of development. As such, to understand them is not only a fundamental question of Developmental Biology but also highly relevant for human health. This is of particular importance with the heart, which is incredible susceptible to any changes in its normal asymmetry, as the high mortality and disease rates in patients with congenital heart defects so clearly demonstrate.

With this in mind Maria Ines Medeiros de Campos-Baptista and Alexander F. Schier from the Institute Gulbenkian of Science (Lisbon, Portugal) and the Harvard University (Cambridge, USA) and colleagues decided to analyse the expression of the Nodal gene family – which has been linked to left-right axis determination in vertebrates - during the development of zebrafish heart.

Genes linked to asymmetric development are active in the embryo very early during development and only on one side and in fact, the researchers found that some Nodal were expressed at the onset of asymmetry, on left side of the embryo and even co-localizing with heart markers supporting the idea that this family was in fact involved in the asymmetric development of the heart.

To investigate this further Campos-Baptista, Schier and colleagues used a powerful 4D microscope technique that allows to follow individual cells, to film, in real time, the heart development of zebrafish embryos that have been modified to express green fluorescent protein (GFP) in their heart muscle cells (or cardiomyocytes). The idea was that with this marker - together with the fact that zebrafish embryos are transparent - it was possible to track of individual cardiomyocytes as the heart developed to determine the importance of Nodal genes in this development. By comparing animals with or without functional Nodal, the researchers found that these genes regulated the speed and direction of cardiomyocytes, and, when lacking, led to slower and randomly moving cardiomyocytes that losing their asymmetric behaviour, go and form a symmetrically positioned heart (so localised on the body midline).

Nevertheless, although problems in the Nodal genes do affect heart positioning, the fact that this organ is still formed and the organism is viable – although probably not too healthy - reveals that other independent mechanisms, regulated by other genes, affect the same development.

In conclusion, Campos-Baptista, Schier and colleagues’ results show that the movement of individual cardiomyocytes is the determining force behind heart morphogenesis, and that the Nodal genes, by controlling the speed and direction of individual heart muscle cells, are in fact responsible for the asymmetric formation of the heart

“The next step - according to Ines Campos-Baptista, a Portuguese researcher and the first author of the article - will be to identify other genes this time behind the particular movements of the cardiac cells, such as those linked to the cell skeleton, etc. Identifying these will be crucial to fully understand heart asymmetric formation and - since Nodal also plays a role in this developmental of other organs - it will also shed light on the development of many other internal organs such as the pancreas, gut, lungs, etc.”

Campos-Baptista, Schier and colleagues’ findings are important for a better understanding of the mechanism behind embryonic development., specifically of the heart, and, as such, can take us a little closer to one day to be able, not only of preventing heart congenital anomalies, but also of being able to grow our own heart tissues. Although that time is still a long, long way away.

Piece by Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www3.interscience.wiley.com/journal/117927935/grouphome/home.html
http://www.mcb.harvard.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>