Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No sedative necessary: Scientists discover new “sleep node” in the brain

19.09.2014

Findings may lead to new therapies for sleep disorders, including insomnia

A sleep-promoting circuit located deep in the primitive brainstem has revealed how we fall into deep sleep. Discovered by researchers at Harvard School of Medicine and the University at Buffalo School of Medicine and Biomedical Sciences, this is only the second “sleep node” identified in the mammalian brain whose activity appears to be both necessary and sufficient to produce deep sleep.


Using designer genes, researchers at UB and Harvard were able to 'turn on' specific neurons in the brainstem that result in deep sleep.

Published online in August in Nature Neuroscience, the study demonstrates that fully half of all of the brain’s sleep-promoting activity originates from the parafacial zone (PZ) in the brainstem. The brainstem is a primordial part of the brain that regulates basic functions necessary for survival, such as breathing, blood pressure, heart rate and body temperature.

“The close association of a sleep center with other regions that are critical for life highlights the evolutionary importance of sleep in the brain,” says Caroline E. Bass, assistant professor of Pharmacology and Toxicology in the UB School of Medicine and Biomedical Sciences and a co-author on the paper.

The researchers found that a specific type of neuron in the PZ that makes the neurotransmitter gamma-aminobutyric acid (GABA) is responsible for deep sleep. They used a set of innovative tools to precisely control these neurons remotely, in essence giving them the ability to turn the neurons on and off at will.

 “These new molecular approaches allow unprecedented control over brain function at the cellular level,” says Christelle Ancelet, postdoctoral fellow at Harvard School of Medicine. “Before these tools were developed, we often used ‘electrical stimulation’ to activate a region, but the problem is that doing so stimulates everything the electrode touches and even surrounding areas it didn’t. It was a sledgehammer approach, when what we needed was a scalpel.”

“To get the precision required for these experiments, we introduced a virus into the PZ that expressed a ‘designer’ receptor on GABA neurons only but didn’t otherwise alter brain function,” explains Patrick Fuller, assistant professor at Harvard and senior author on the paper. “When we turned on the GABA neurons in the PZ, the animals quickly fell into a deep sleep without the use of sedatives or sleep aids.”

How these neurons interact in the brain with other sleep and wake-promoting brain regions still need to be studied, the researchers say, but eventually these findings may translate into new medications for treating sleep disorders, including insomnia, and the development of better and safer anesthetics.

“We are at a truly transformative point in neuroscience,” says Bass, “where the use of designer genes gives us unprecedented ability to control the brain. We can now answer fundamental questions of brain function, which have traditionally been beyond our reach, including the ‘why’ of sleep, one of the more enduring mysteries in the neurosciences.”

The work was funded by the National Institutes of Health.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | Eurek Alert!
Further information:
http://www.buffalo.edu/news/releases/2014/09/027.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>