Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No mid-day nap for Finnish flies

15.03.2017

Fruit flies from warm regions have a siesta, whereas their Nordic counterparts do not. Biologists from the University of Würzburg reset the circadian clock of African flies in an experiment. As a result, these insect also reduced the length of their siesta.

There are more than 2,000 species of fruit flies around the world. Some prefer warmer climates, whereas others are home in northerly latitudes. "We wanted to find out whether the circadian clock of the northern species differs from that of their southern relatives," explains Professor Charlotte Helfrich-Förster from the University of Würzburg's Biocenter. "For this purpose, we compared two fruit fly species from Finland with one from Tanzania."


African flies show active phases limited to the time around dusk and dawn; finnish dipterans in contrast have their activity peak in the early afternoon and stay active until nightfall, mostly without taking a siesta.

Long siesta at the equator

In the laboratory, the scientists varied the length of light and dark cycles to which the insects were exposed. In their first experiment, twelve hours of day were followed by twelve hours of night. This rhythm is typical for the equator where day and night are about equally long throughout the year.

The African flies exhibited a characteristic pattern of activity under these conditions: Their active phases were limited to the time around dusk and dawn; in the meantime they rested. In nature, such behaviour is highly advantageous as it allows the insects to better cope with the heat of the day.

Being slightly more relaxed in the morning, the Finnish dipterans in contrast had their activity peak in the early afternoon and stayed active until nightfall, mostly without taking a siesta. From a biological point of view, this behaviour makes sense, because even at the height of summer, the northern Scandinavian sun is rarely strong enough to harm the animals.

In the next step, the scientists extended the lab day: They left the lights on for 20 hours before turning them off again for four hours. In response to this, the Tanzanian flies did not extend their resting period, but rather started to bustle about long before dusk. Their activity now peaked at a time of day when it would normally still be scorching hot. If there were 20-hour days in Tanzania, such behaviour would probably be very risky.

Tiny differences in the flies' brains

So the Circadian clock of the southern flies seems to be geared to more or less constant day lengths. The interval between morning and evening activity always has about the same length. The Finnish specimens on the contrary adapted their activity pattern to the longer days: They used the extended period of light for more extensive foraging which was ended only by the onset of darkness. "So the circadian clocks of the two species seem to respond very differently to the modified day-and-night rhythms, Charlotte Helfrich-Förster points out."We asked ourselves why this is the case."

On the surface of it, the circadian clocks of all three species seem to be structured identically: Both the Finnish fruit flies and their Tanzanian counterparts have the same clock neurons – these are the nerve cells in the brain that make up the circadian system. Therefore, the Würzburg scientists took a closer look at the flies' brains. "We were able to show that the Finnish species produce no blue light photoreceptor in specific neurons, very unlike their African relatives," says Helfrich-Förster. "This means that the affected nerve cells do not have a sensor for day and night." Other neurons lack a molecule named PDF which usually passes on the incoming light-dark signals to other centres in the brain.

Resetting the fly clock

But are these differences really responsible for the altered activity pattern in the Scandinavian insects? To answer this question, the Würzburg scientists "reset" the circadian clock of the African Drosophila. Through genetic modification, they switched off the production of the blue light photoreceptor in those neurons in which it was missing in the Finnish flies, too. They proceeded similarly for the PDF. The result of the manipulation was striking: "The fruit flies from Tanzania now exhibited a rhythm of activity quite similar to that of their Finnish colleagues," Professor Helfrich-Förster emphasizes. "Also their siesta was less pronounced."

The ancestral fruit fly is believed to be of African origin. Over time, the insects also spread to cooler regions. The scientists assume that the flies' circadian clock also changed in the process, allowing the insects to adapt to the day length fluctuations and the lower intensity of the sun.

Pamela Menegazzi, Elena Dalla Benetta, Marta Beauchamp, Matthias Schlichting, Ingolf Steffan-Dewenter and Charlotte Helfrich-Förster: Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids; Current Biology; DOI: 10.1016/j.cub.2017.01.036

Contact

Prof. Dr. Charlotte Helfrich-Förster, Department of Neurobiology and Genetics, T: +49 931 31-88823, E-Mail: charlotte.foerster@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>