Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No mid-day nap for Finnish flies

15.03.2017

Fruit flies from warm regions have a siesta, whereas their Nordic counterparts do not. Biologists from the University of Würzburg reset the circadian clock of African flies in an experiment. As a result, these insect also reduced the length of their siesta.

There are more than 2,000 species of fruit flies around the world. Some prefer warmer climates, whereas others are home in northerly latitudes. "We wanted to find out whether the circadian clock of the northern species differs from that of their southern relatives," explains Professor Charlotte Helfrich-Förster from the University of Würzburg's Biocenter. "For this purpose, we compared two fruit fly species from Finland with one from Tanzania."


African flies show active phases limited to the time around dusk and dawn; finnish dipterans in contrast have their activity peak in the early afternoon and stay active until nightfall, mostly without taking a siesta.

Long siesta at the equator

In the laboratory, the scientists varied the length of light and dark cycles to which the insects were exposed. In their first experiment, twelve hours of day were followed by twelve hours of night. This rhythm is typical for the equator where day and night are about equally long throughout the year.

The African flies exhibited a characteristic pattern of activity under these conditions: Their active phases were limited to the time around dusk and dawn; in the meantime they rested. In nature, such behaviour is highly advantageous as it allows the insects to better cope with the heat of the day.

Being slightly more relaxed in the morning, the Finnish dipterans in contrast had their activity peak in the early afternoon and stayed active until nightfall, mostly without taking a siesta. From a biological point of view, this behaviour makes sense, because even at the height of summer, the northern Scandinavian sun is rarely strong enough to harm the animals.

In the next step, the scientists extended the lab day: They left the lights on for 20 hours before turning them off again for four hours. In response to this, the Tanzanian flies did not extend their resting period, but rather started to bustle about long before dusk. Their activity now peaked at a time of day when it would normally still be scorching hot. If there were 20-hour days in Tanzania, such behaviour would probably be very risky.

Tiny differences in the flies' brains

So the Circadian clock of the southern flies seems to be geared to more or less constant day lengths. The interval between morning and evening activity always has about the same length. The Finnish specimens on the contrary adapted their activity pattern to the longer days: They used the extended period of light for more extensive foraging which was ended only by the onset of darkness. "So the circadian clocks of the two species seem to respond very differently to the modified day-and-night rhythms, Charlotte Helfrich-Förster points out."We asked ourselves why this is the case."

On the surface of it, the circadian clocks of all three species seem to be structured identically: Both the Finnish fruit flies and their Tanzanian counterparts have the same clock neurons – these are the nerve cells in the brain that make up the circadian system. Therefore, the Würzburg scientists took a closer look at the flies' brains. "We were able to show that the Finnish species produce no blue light photoreceptor in specific neurons, very unlike their African relatives," says Helfrich-Förster. "This means that the affected nerve cells do not have a sensor for day and night." Other neurons lack a molecule named PDF which usually passes on the incoming light-dark signals to other centres in the brain.

Resetting the fly clock

But are these differences really responsible for the altered activity pattern in the Scandinavian insects? To answer this question, the Würzburg scientists "reset" the circadian clock of the African Drosophila. Through genetic modification, they switched off the production of the blue light photoreceptor in those neurons in which it was missing in the Finnish flies, too. They proceeded similarly for the PDF. The result of the manipulation was striking: "The fruit flies from Tanzania now exhibited a rhythm of activity quite similar to that of their Finnish colleagues," Professor Helfrich-Förster emphasizes. "Also their siesta was less pronounced."

The ancestral fruit fly is believed to be of African origin. Over time, the insects also spread to cooler regions. The scientists assume that the flies' circadian clock also changed in the process, allowing the insects to adapt to the day length fluctuations and the lower intensity of the sun.

Pamela Menegazzi, Elena Dalla Benetta, Marta Beauchamp, Matthias Schlichting, Ingolf Steffan-Dewenter and Charlotte Helfrich-Förster: Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids; Current Biology; DOI: 10.1016/j.cub.2017.01.036

Contact

Prof. Dr. Charlotte Helfrich-Förster, Department of Neurobiology and Genetics, T: +49 931 31-88823, E-Mail: charlotte.foerster@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>