Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Research Shows How Some Plants Invade, Take Over Others

08.07.2009
Research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

Biologists know that when plants battle for space, often the actual battle is for getting the nitrogen.

Now, research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

In an article published July 6 in the scientific journal Proceedings of the National Academy of Sciences, UNL biologist Johannes "Jean" Knops demonstrates why one invasive plant species is replacing native species -- it's because of its ability to take up and hold on to nitrogen.

Biologists know that nitrogen is crucial to plant growth that invasive species often grow better and acquire more nitrogen, but have been uncertain about which mechanism allows invasive species to gain an advantage.

Over seven years' study at the Cedar Creek Ecosystem Science Reserve in central Minnesota, Knops and PhD candidate Ramesh Laungani studied the nitrogen pool and fluxes in the ecosystem that included seven grassland and forest species, including the Eastern white pine (Pinus strobus), a species that is rapidly invading Minnesota prairies. Over time they discovered that the pine had accrued nearly twice as much biomass as the next most productive species, and more than three times as much biomass relative to the other species.

"The higher productivity of the white pine is caused by an increased biomass nitrogen pool that was not driven by increased ecosystem level nitrogen inputs," Knops said. "But we found the white pine takes up nitrogen and holds on to it much longer, with leads to an accumulation of much more nitrogen in the plant and a depletion of nitrogen in the soil. We concluded high nitrogen residence time was the key mechanism driving the significantly higher plant nitrogen pool and the high productivity of that species."

In other words, pines mine the soil for organic nitrogen, decrease soil fertility and use this nitrogen to outcompete other species.

Knops, a plant and ecosystems ecologist, said the higher nitrogen residence time creates a positive feedback that redistributes nitrogen from the soil into the plant's nitrogen cycling. And this strengthened the species to support its invasion.

"What this higher nitrogen residence time means is that the plant is taking nitrogen from the soil and using it to make the plant grow more efficiently, and it also gives them an upper hand in being able to invade other species."

Biologists had identified six mechanisms that influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization and plant nitrogen residence times. This study is the first to study all together and pinpoint the mechanism that explains why this pine is a successful invader.

Knops said he was somewhat surprised by the pines' ability to pull so much nitrogen out of the soil, especially in the degraded old fields that were studied.

Knowing this finding about nitrogen cycling with the white pine species may lead to important discoveries in how to stop invasions of other non-native species, like the Eastern red cedar, a destructive invader in the Great Plains; green ash, hackberry, or Chinese elms, or eventually to weedy exotic grasses that invade our native rangelands.

The study is the latest of several Knops has conducted at the Minnesota field site; this one began in 1999 with data taken in 2006. He has other projects in the mid-stage of 10- to 20-year timeframes, one looking at the establishment phase of pines, and another on grassland systems and their invasive species and abundance. He said his research field does require patience and longterm funding.

National Science Foundation, the University of Nebraska and the Center for Invasive Plant Species Management at Montana State University helped support the research.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>