Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Research Shows How Some Plants Invade, Take Over Others

08.07.2009
Research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

Biologists know that when plants battle for space, often the actual battle is for getting the nitrogen.

Now, research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

In an article published July 6 in the scientific journal Proceedings of the National Academy of Sciences, UNL biologist Johannes "Jean" Knops demonstrates why one invasive plant species is replacing native species -- it's because of its ability to take up and hold on to nitrogen.

Biologists know that nitrogen is crucial to plant growth that invasive species often grow better and acquire more nitrogen, but have been uncertain about which mechanism allows invasive species to gain an advantage.

Over seven years' study at the Cedar Creek Ecosystem Science Reserve in central Minnesota, Knops and PhD candidate Ramesh Laungani studied the nitrogen pool and fluxes in the ecosystem that included seven grassland and forest species, including the Eastern white pine (Pinus strobus), a species that is rapidly invading Minnesota prairies. Over time they discovered that the pine had accrued nearly twice as much biomass as the next most productive species, and more than three times as much biomass relative to the other species.

"The higher productivity of the white pine is caused by an increased biomass nitrogen pool that was not driven by increased ecosystem level nitrogen inputs," Knops said. "But we found the white pine takes up nitrogen and holds on to it much longer, with leads to an accumulation of much more nitrogen in the plant and a depletion of nitrogen in the soil. We concluded high nitrogen residence time was the key mechanism driving the significantly higher plant nitrogen pool and the high productivity of that species."

In other words, pines mine the soil for organic nitrogen, decrease soil fertility and use this nitrogen to outcompete other species.

Knops, a plant and ecosystems ecologist, said the higher nitrogen residence time creates a positive feedback that redistributes nitrogen from the soil into the plant's nitrogen cycling. And this strengthened the species to support its invasion.

"What this higher nitrogen residence time means is that the plant is taking nitrogen from the soil and using it to make the plant grow more efficiently, and it also gives them an upper hand in being able to invade other species."

Biologists had identified six mechanisms that influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization and plant nitrogen residence times. This study is the first to study all together and pinpoint the mechanism that explains why this pine is a successful invader.

Knops said he was somewhat surprised by the pines' ability to pull so much nitrogen out of the soil, especially in the degraded old fields that were studied.

Knowing this finding about nitrogen cycling with the white pine species may lead to important discoveries in how to stop invasions of other non-native species, like the Eastern red cedar, a destructive invader in the Great Plains; green ash, hackberry, or Chinese elms, or eventually to weedy exotic grasses that invade our native rangelands.

The study is the latest of several Knops has conducted at the Minnesota field site; this one began in 1999 with data taken in 2006. He has other projects in the mid-stage of 10- to 20-year timeframes, one looking at the establishment phase of pines, and another on grassland systems and their invasive species and abundance. He said his research field does require patience and longterm funding.

National Science Foundation, the University of Nebraska and the Center for Invasive Plant Species Management at Montana State University helped support the research.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>