Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Research Shows How Some Plants Invade, Take Over Others

08.07.2009
Research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

Biologists know that when plants battle for space, often the actual battle is for getting the nitrogen.

Now, research at the University of Nebraska-Lincoln gives important new information on how plants can change "nitrogen cycling" to gain nitrogen and how this allows plant species to invade and take over native plants.

In an article published July 6 in the scientific journal Proceedings of the National Academy of Sciences, UNL biologist Johannes "Jean" Knops demonstrates why one invasive plant species is replacing native species -- it's because of its ability to take up and hold on to nitrogen.

Biologists know that nitrogen is crucial to plant growth that invasive species often grow better and acquire more nitrogen, but have been uncertain about which mechanism allows invasive species to gain an advantage.

Over seven years' study at the Cedar Creek Ecosystem Science Reserve in central Minnesota, Knops and PhD candidate Ramesh Laungani studied the nitrogen pool and fluxes in the ecosystem that included seven grassland and forest species, including the Eastern white pine (Pinus strobus), a species that is rapidly invading Minnesota prairies. Over time they discovered that the pine had accrued nearly twice as much biomass as the next most productive species, and more than three times as much biomass relative to the other species.

"The higher productivity of the white pine is caused by an increased biomass nitrogen pool that was not driven by increased ecosystem level nitrogen inputs," Knops said. "But we found the white pine takes up nitrogen and holds on to it much longer, with leads to an accumulation of much more nitrogen in the plant and a depletion of nitrogen in the soil. We concluded high nitrogen residence time was the key mechanism driving the significantly higher plant nitrogen pool and the high productivity of that species."

In other words, pines mine the soil for organic nitrogen, decrease soil fertility and use this nitrogen to outcompete other species.

Knops, a plant and ecosystems ecologist, said the higher nitrogen residence time creates a positive feedback that redistributes nitrogen from the soil into the plant's nitrogen cycling. And this strengthened the species to support its invasion.

"What this higher nitrogen residence time means is that the plant is taking nitrogen from the soil and using it to make the plant grow more efficiently, and it also gives them an upper hand in being able to invade other species."

Biologists had identified six mechanisms that influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization and plant nitrogen residence times. This study is the first to study all together and pinpoint the mechanism that explains why this pine is a successful invader.

Knops said he was somewhat surprised by the pines' ability to pull so much nitrogen out of the soil, especially in the degraded old fields that were studied.

Knowing this finding about nitrogen cycling with the white pine species may lead to important discoveries in how to stop invasions of other non-native species, like the Eastern red cedar, a destructive invader in the Great Plains; green ash, hackberry, or Chinese elms, or eventually to weedy exotic grasses that invade our native rangelands.

The study is the latest of several Knops has conducted at the Minnesota field site; this one began in 1999 with data taken in 2006. He has other projects in the mid-stage of 10- to 20-year timeframes, one looking at the establishment phase of pines, and another on grassland systems and their invasive species and abundance. He said his research field does require patience and longterm funding.

National Science Foundation, the University of Nebraska and the Center for Invasive Plant Species Management at Montana State University helped support the research.

Steve Smith | Newswise Science News
Further information:
http://www.unl.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>