Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nitrogen Puzzle in the Oceans

05.11.2013
Nitrogen isotope effects by anammox deciphered.

A team of scientists from the Max Planck Institute for Marine Microbiology, the University of Basel, and Radboud University Nijmegen has now revealed the details of an important microbial process regulating the global nitrogen budget in the oceans. They present their results in the Proceedings of the National Academy of Sciences of the United States of America.


Schematic view of nitrogen net gain and loss in the ocean. Max Planck Institute for Marine Microbiology


Bioreactor with anammox enrichment culture.
Boran Kartal, Radboud University Nijmegen

Every organism needs nitrogen to survive and grow

Many organisms do not have the ability to obtain nitrogen from molecular nitrogen (N2), the major component in the atmosphere. They do not have the nitrogen fixation pathway – and have to rely on supply of nitrogen that has been fixed by others. The availability of fixed nitrogen, in the form of ammonium, nitrite and nitrate, consequently often limits primary production in the environment (one of the reasons why many fertilizers are rich in fixed nitrogen).

However, there are microbial processes that convert fixed nitrogen back to N2 (production of energy instead of growth). Scientists call this process loss of fixed nitrogen, because it removes the important fixed nitrogen from the environment, and thereby limits primary productivity (i.e. production of biomass). These nitrogen-loss processes, which are carried out by different types of microbes, include the reduction of nitrogen compounds like nitrate and nitrite, the oxidation of ammonium, and a process that combines nitrite and ammonium to form N2, the anaerobic ammonium oxidation (anammox).

In the water column of the ocean, these nitrogen-loss processes are most prominent in water bodies, known as oxygen minimum zones (OMZs), where dissolved oxygen (O2) is rapidly consumed almost to completion. There is major concern that such OMZs will expand in the future due to climate change, which could have a massive impact on the amount of nitrogen lost from the marine realm, affecting the primary productivity in the ocean.

For these reasons, it is important to know which microbial process is responsible for what part of the observed nitrogen-loss, and where this process happens within OMZs.

Found: The missing piece to solve the N isotope puzzle

Prof. Dr. Ben Brunner, one of the three main authors, explains: “We can answer this question with the help of stable nitrogen isotopes, by looking at the ratio between the stable isotopes 15N and 14N in the different pools of fixed N and in the produced N2, because different microbial processes leave different N isotope fingerprints; some prefer the light isotope 14N over the heavier isotope 15N, and others do the opposite.” Dr. Sergio Contreras, a (paleo) biogeochemist interested in the past and future of the Nitrogen cycling, continues: “However, the prerequisite to decipher the N isotope signatures in the environment is to know the isotope fingerprint of the individual nitrogen-loss processes”. Prof. Dr. Moritz Lehmann, isotope biogeochemist from the University of Basel, adds: “ This is where so far, there was a gaping hole in our knowledge. The isotope effects of one major N-loss process, namely anammox, were unknown, and previous N-isotope based assessments of fixed N loss rates in the global ocean may have been severely biased.”

Dr. Boran Kartal, microbiologist at Radboud University Nijmegen, explains: “We used the highly enriched cultures that are available in our laboratory to determine the nitrogen isotope effects of anammox bacteria. Our findings show that the isotope effects induced by anammox can explain isotope signatures observed in the OMZs, which are very important primary production sites in the oceans.”

Prof. Dr. Marcel Kuypers, director at the Max Planck Institute, summarizes: “This missing piece of information is of utmost importance to solve the nitrogen isotope puzzle, not only because anammox is an important process in OMZs, but also because anammox simultaneously affects the nitrogen isotope composition of all nitrogen pools of interest: it converts ammonium and nitrite to N2 and nitrate.”

Through their joint effort the scientists were able to decipher the intricate isotope fingerprint of anammox. Their results, published in the Proceeding of the National Academy of Sciences of the United States of America, reconcile so far mysterious N isotope patterns from OMZ, and provide the missing piece to solve the nitrogen isotope puzzle for fixed N-loss from the environment.

Further Information
Prof. Dr. Marcel Kuypers, +49 421 2028602, mkuypers@mpi-bremen.de
Prof. Dr. Ben Brunner, +45 871 56586, benobru@gmail.com
Dr. Gaute Lavik, +49 421 2028651, glavik@mpi-bremen.de
Prof. Dr. Moritz Lehmann, moritz.lehmann@unibas.ch
Dr. ir. Boran Kartal kartal@science.ru.nl
Press officer
Dr. Manfred Schloesser, +49 421 2028704, mschloes@mpi-bremen.de
Original publication
Nitrogen isotope effects induced by anammox bacteria
B. Brunner, S. Contreras, M.F. Lehmann, O. Matantseva, M. Rollog, T. Kalvelage, G. Klockgether, G. Lavik, M.S.M. Jetten, B. Kartal and M.M.M. Kuypers (2013)

Proc. Natl. Acad. Sci. USA, doi 10.1073/pnas.1310488110

Institutes and Universities
Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Celsiusstrasse 1, D-28359 Bremen, Germany
Departement Umweltwissenschaften (Biogeochemie), Universität Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

Institute of Water and Wetland Research, Department of Microbiology, Radboud University Nijmegen, Heyendaelseweg 135, 6525 AJ Nijmegen, The Netherlands

Weitere Informationen:

http://www.mpi-bremen.de
Homeopage Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>