Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Nitrogen Puzzle in the Oceans

05.11.2013
Nitrogen isotope effects by anammox deciphered.

A team of scientists from the Max Planck Institute for Marine Microbiology, the University of Basel, and Radboud University Nijmegen has now revealed the details of an important microbial process regulating the global nitrogen budget in the oceans. They present their results in the Proceedings of the National Academy of Sciences of the United States of America.


Schematic view of nitrogen net gain and loss in the ocean. Max Planck Institute for Marine Microbiology


Bioreactor with anammox enrichment culture.
Boran Kartal, Radboud University Nijmegen

Every organism needs nitrogen to survive and grow

Many organisms do not have the ability to obtain nitrogen from molecular nitrogen (N2), the major component in the atmosphere. They do not have the nitrogen fixation pathway – and have to rely on supply of nitrogen that has been fixed by others. The availability of fixed nitrogen, in the form of ammonium, nitrite and nitrate, consequently often limits primary production in the environment (one of the reasons why many fertilizers are rich in fixed nitrogen).

However, there are microbial processes that convert fixed nitrogen back to N2 (production of energy instead of growth). Scientists call this process loss of fixed nitrogen, because it removes the important fixed nitrogen from the environment, and thereby limits primary productivity (i.e. production of biomass). These nitrogen-loss processes, which are carried out by different types of microbes, include the reduction of nitrogen compounds like nitrate and nitrite, the oxidation of ammonium, and a process that combines nitrite and ammonium to form N2, the anaerobic ammonium oxidation (anammox).

In the water column of the ocean, these nitrogen-loss processes are most prominent in water bodies, known as oxygen minimum zones (OMZs), where dissolved oxygen (O2) is rapidly consumed almost to completion. There is major concern that such OMZs will expand in the future due to climate change, which could have a massive impact on the amount of nitrogen lost from the marine realm, affecting the primary productivity in the ocean.

For these reasons, it is important to know which microbial process is responsible for what part of the observed nitrogen-loss, and where this process happens within OMZs.

Found: The missing piece to solve the N isotope puzzle

Prof. Dr. Ben Brunner, one of the three main authors, explains: “We can answer this question with the help of stable nitrogen isotopes, by looking at the ratio between the stable isotopes 15N and 14N in the different pools of fixed N and in the produced N2, because different microbial processes leave different N isotope fingerprints; some prefer the light isotope 14N over the heavier isotope 15N, and others do the opposite.” Dr. Sergio Contreras, a (paleo) biogeochemist interested in the past and future of the Nitrogen cycling, continues: “However, the prerequisite to decipher the N isotope signatures in the environment is to know the isotope fingerprint of the individual nitrogen-loss processes”. Prof. Dr. Moritz Lehmann, isotope biogeochemist from the University of Basel, adds: “ This is where so far, there was a gaping hole in our knowledge. The isotope effects of one major N-loss process, namely anammox, were unknown, and previous N-isotope based assessments of fixed N loss rates in the global ocean may have been severely biased.”

Dr. Boran Kartal, microbiologist at Radboud University Nijmegen, explains: “We used the highly enriched cultures that are available in our laboratory to determine the nitrogen isotope effects of anammox bacteria. Our findings show that the isotope effects induced by anammox can explain isotope signatures observed in the OMZs, which are very important primary production sites in the oceans.”

Prof. Dr. Marcel Kuypers, director at the Max Planck Institute, summarizes: “This missing piece of information is of utmost importance to solve the nitrogen isotope puzzle, not only because anammox is an important process in OMZs, but also because anammox simultaneously affects the nitrogen isotope composition of all nitrogen pools of interest: it converts ammonium and nitrite to N2 and nitrate.”

Through their joint effort the scientists were able to decipher the intricate isotope fingerprint of anammox. Their results, published in the Proceeding of the National Academy of Sciences of the United States of America, reconcile so far mysterious N isotope patterns from OMZ, and provide the missing piece to solve the nitrogen isotope puzzle for fixed N-loss from the environment.

Further Information
Prof. Dr. Marcel Kuypers, +49 421 2028602, mkuypers@mpi-bremen.de
Prof. Dr. Ben Brunner, +45 871 56586, benobru@gmail.com
Dr. Gaute Lavik, +49 421 2028651, glavik@mpi-bremen.de
Prof. Dr. Moritz Lehmann, moritz.lehmann@unibas.ch
Dr. ir. Boran Kartal kartal@science.ru.nl
Press officer
Dr. Manfred Schloesser, +49 421 2028704, mschloes@mpi-bremen.de
Original publication
Nitrogen isotope effects induced by anammox bacteria
B. Brunner, S. Contreras, M.F. Lehmann, O. Matantseva, M. Rollog, T. Kalvelage, G. Klockgether, G. Lavik, M.S.M. Jetten, B. Kartal and M.M.M. Kuypers (2013)

Proc. Natl. Acad. Sci. USA, doi 10.1073/pnas.1310488110

Institutes and Universities
Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Celsiusstrasse 1, D-28359 Bremen, Germany
Departement Umweltwissenschaften (Biogeochemie), Universität Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

Institute of Water and Wetland Research, Department of Microbiology, Radboud University Nijmegen, Heyendaelseweg 135, 6525 AJ Nijmegen, The Netherlands

Weitere Informationen:

http://www.mpi-bremen.de
Homeopage Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>