Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nitric oxide impacts source of sickle cell pain crisis

Nitric oxide gas appears to directly impact the source of the classic, disabling pain crises of sickle cell disease, Georgia Health Sciences University researchers report.

The short-acting gas helps unglue hemoglobin molecules that stick together, forming long chains that ultimately deform red blood cells and prompting a cellular pileup in small blood vessels and pain, said Dr. C. Alvin Head, Chairman of GHSU’s Department of Anesthesiology.

The findings get scientists closer to understanding why red blood cells sickle and potentially to a easy-to-use, non-addictive treatment that helps avoid it, said Dr. Tohru Ikuta, GHSU molecular hematologist.

Hydroxyurea, which prompts the body to make more fetal hemoglobin which cannot sickle, is currently the only approved therapy for sickle cell. Patients with recurring pain crises typically must take increasingly higher doses of stronger narcotics to deal with the pain.

Head and his colleagues envision instead an inhaler like asthmatics use that enables them to breathe in nitric oxide when they feel a pain crisis coming on. “Drugs just mask the symptoms,” Head said. “We have mounting evidence that nitric oxide directly addresses the source of pain crises to help patients avoid them.”

They’ve shown in a small patient sample that inhaling nitric oxide appears safe and effective. The study of 18 patients in Atlanta, Chicago and Detroit published in 2010 in the American Journal of Hematology showed that the half who inhaled nitric oxide for four hours had better pain control than those receiving only the standard self-administered morphine.

The new study examined nitric oxide’s impact from many angles and showed that it appears to disperse dense, solid chains of hemoglobin troublemakers. Once a significant number of hemoglobin molecules stick together, it causes red blood cells to distort from their natural round shape that easily maneuvers blood vessels to a sickle-shape. At that point, red blood cells also become uncharacteristically sticky.

They found nitric oxide reduced the length of the unnatural hemoglobin strands, made the strands more fragile and, using a high-powered confocal microscope, they could see it also helped cells regain a more normal shape. Studies were done on human cells in vitro.

Next steps include fine-tuning the dose and learning more about why red blood cells become sticky. Head notes that with a gas, it’s a lot more tricky to determine how much drug gets into the blood than with an oral or intravenous delivery. They already have evidence that in sickle cell disease red and white blood cells stick together, which they should not.

They believe their findings about how these cells clog up vessels will have broad applications for a number of clot-based conditions, including the increased clot risk that follows surgery. “Really what we are learning is the basic understanding of early clot formation,” Head said.

Earlier this year, GHSU scientists reported in Blood that a new compound, an aptamer, developed by Archemix Corporation in Cambridge, Mass., also appears to prevent cellular pileups by occupying sticky receptors lining the walls of small blood vessels where sickle-shaped red blood cells and white blood cells can stick. That study, led by Dr. Diana R. Gutsaeva, GHSU physiologist and molecular biologist, points toward another potential sickle cell therapy.

Toni Baker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>