Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide impacts source of sickle cell pain crisis

10.05.2011
Nitric oxide gas appears to directly impact the source of the classic, disabling pain crises of sickle cell disease, Georgia Health Sciences University researchers report.

The short-acting gas helps unglue hemoglobin molecules that stick together, forming long chains that ultimately deform red blood cells and prompting a cellular pileup in small blood vessels and pain, said Dr. C. Alvin Head, Chairman of GHSU’s Department of Anesthesiology.

The findings get scientists closer to understanding why red blood cells sickle and potentially to a easy-to-use, non-addictive treatment that helps avoid it, said Dr. Tohru Ikuta, GHSU molecular hematologist.

Hydroxyurea, which prompts the body to make more fetal hemoglobin which cannot sickle, is currently the only approved therapy for sickle cell. Patients with recurring pain crises typically must take increasingly higher doses of stronger narcotics to deal with the pain.

Head and his colleagues envision instead an inhaler like asthmatics use that enables them to breathe in nitric oxide when they feel a pain crisis coming on. “Drugs just mask the symptoms,” Head said. “We have mounting evidence that nitric oxide directly addresses the source of pain crises to help patients avoid them.”

They’ve shown in a small patient sample that inhaling nitric oxide appears safe and effective. The study of 18 patients in Atlanta, Chicago and Detroit published in 2010 in the American Journal of Hematology showed that the half who inhaled nitric oxide for four hours had better pain control than those receiving only the standard self-administered morphine.

The new study examined nitric oxide’s impact from many angles and showed that it appears to disperse dense, solid chains of hemoglobin troublemakers. Once a significant number of hemoglobin molecules stick together, it causes red blood cells to distort from their natural round shape that easily maneuvers blood vessels to a sickle-shape. At that point, red blood cells also become uncharacteristically sticky.

They found nitric oxide reduced the length of the unnatural hemoglobin strands, made the strands more fragile and, using a high-powered confocal microscope, they could see it also helped cells regain a more normal shape. Studies were done on human cells in vitro.

Next steps include fine-tuning the dose and learning more about why red blood cells become sticky. Head notes that with a gas, it’s a lot more tricky to determine how much drug gets into the blood than with an oral or intravenous delivery. They already have evidence that in sickle cell disease red and white blood cells stick together, which they should not.

They believe their findings about how these cells clog up vessels will have broad applications for a number of clot-based conditions, including the increased clot risk that follows surgery. “Really what we are learning is the basic understanding of early clot formation,” Head said.

Earlier this year, GHSU scientists reported in Blood that a new compound, an aptamer, developed by Archemix Corporation in Cambridge, Mass., also appears to prevent cellular pileups by occupying sticky receptors lining the walls of small blood vessels where sickle-shaped red blood cells and white blood cells can stick. That study, led by Dr. Diana R. Gutsaeva, GHSU physiologist and molecular biologist, points toward another potential sickle cell therapy.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>