Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide can alter brain function

28.11.2008
Research from the Medical Research Council (MRC) Toxicology Unit at the University of Leicester shows that nitric oxide (NO) can change the computational ability of the brain. This finding has implications for the treatment of neurodegenerative diseases such as Alzheimer’s Disease and our understanding of brain function more generally.

The research is led by Professor Ian Forsythe and is reported in the journal Neuron on 26th November.

Professor Forsythe, of the MRC Toxicology Unit, explains: “It is well known that nerve cells communicate via the synapse – the site at which chemical messengers (neurotransmitters such as acetylcholine or glutamate) are packaged and then released under tight control to influence their neighbours.

“Nitric oxide is a chemical messenger which cannot be stored and can rapidly diffuse across cell membranes to act at remote sites (in contrast to conventional neurotransmitters which cannot pass across cell membranes).

“It is broadly localized in the central nervous system, where it influences synaptic transmission and contributes to learning and memory mechanisms. However, because it is normally released in such minute quantities and is so labile, it is very difficult to study.

“We have exploited an in vitro preparation of a giant synapse -called the calyx of Held, developed here at the University of Leicester in the 1990s- and its target in the auditory pathway to explore nitric oxide signalling in the brain.

“We show that NO is made in response to incoming synaptic activity (activity generated by sound received by the ear) and that it acts to suppress a key potassium ion-channel (Kv3). Normally these ion-channels keep electrical potentials very short-lived, but nitric oxide shifts their activity, slowing the electrical potentials and reducing information passage along the pathway, acting as a form of gain control.

“Surprisingly, the whole population of neurons were affected, even those neurons which had no active synaptic inputs, so indicating that nitric oxide is a ‘volume transmitter’ passing information between cells without the need for a synapse. Such a function is ideal for tuning neuronal populations to global activity. On the other hand, too much nitric oxide is extremely toxic and will cause death of nerve cells; so within the kernel of this important signaling mechanism are the potential seeds for neurodegeneration, which if left unchecked contribute to the pathologies of stroke and dementias.”

In the future Professor Forsythe’s research group will be trying to understand how these signalling mechanisms are applicable elsewhere in the brain and will investigate how aberrant signalling contributes to neurodegenerative disease processes such as in Alzheimer’s disease.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>