Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitric oxide can alter brain function

28.11.2008
Research from the Medical Research Council (MRC) Toxicology Unit at the University of Leicester shows that nitric oxide (NO) can change the computational ability of the brain. This finding has implications for the treatment of neurodegenerative diseases such as Alzheimer’s Disease and our understanding of brain function more generally.

The research is led by Professor Ian Forsythe and is reported in the journal Neuron on 26th November.

Professor Forsythe, of the MRC Toxicology Unit, explains: “It is well known that nerve cells communicate via the synapse – the site at which chemical messengers (neurotransmitters such as acetylcholine or glutamate) are packaged and then released under tight control to influence their neighbours.

“Nitric oxide is a chemical messenger which cannot be stored and can rapidly diffuse across cell membranes to act at remote sites (in contrast to conventional neurotransmitters which cannot pass across cell membranes).

“It is broadly localized in the central nervous system, where it influences synaptic transmission and contributes to learning and memory mechanisms. However, because it is normally released in such minute quantities and is so labile, it is very difficult to study.

“We have exploited an in vitro preparation of a giant synapse -called the calyx of Held, developed here at the University of Leicester in the 1990s- and its target in the auditory pathway to explore nitric oxide signalling in the brain.

“We show that NO is made in response to incoming synaptic activity (activity generated by sound received by the ear) and that it acts to suppress a key potassium ion-channel (Kv3). Normally these ion-channels keep electrical potentials very short-lived, but nitric oxide shifts their activity, slowing the electrical potentials and reducing information passage along the pathway, acting as a form of gain control.

“Surprisingly, the whole population of neurons were affected, even those neurons which had no active synaptic inputs, so indicating that nitric oxide is a ‘volume transmitter’ passing information between cells without the need for a synapse. Such a function is ideal for tuning neuronal populations to global activity. On the other hand, too much nitric oxide is extremely toxic and will cause death of nerve cells; so within the kernel of this important signaling mechanism are the potential seeds for neurodegeneration, which if left unchecked contribute to the pathologies of stroke and dementias.”

In the future Professor Forsythe’s research group will be trying to understand how these signalling mechanisms are applicable elsewhere in the brain and will investigate how aberrant signalling contributes to neurodegenerative disease processes such as in Alzheimer’s disease.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>