Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST develops NMR 'fingerprinting' for monoclonal antibodies

16.04.2015

National Institute of Standards and Technology (NIST) researchers at the Institute for Bioscience and Biotechnology Research (IBBR) have demonstrated the most precise method yet to measure the structural configuration of monoclonal antibodies (mAbs), an important factor in determining the safety and efficacy of these biomolecules as medicines.

Monoclonal antibodies are proteins manufactured in the laboratory that can target specific disease cells or antigens (proteins that trigger an immune reaction) for removal from the body. The method described in a recent paper* may soon help manufacturers and regulators better assess and compare the performance and quality of mAbs.


A schematic showing the NISTmAb monoclonal antibody, an immunoglobulin G (IgG) molecule being developed by NIST as a reference material. The labels mark the fragments Fab and Fc that were used in the novel NIST two-dimensional NMR fingerprinting method to measure the structural configuration of the entire antibody.

Credit: NIST

The IBBR is a joint institute of NIST and the University of Maryland.

Monoclonal antibodies can be used as extremely specific therapeutic agents, including ones designed to target cancer cells unique to an individual. However, in order to properly function as a biotherapeutic agent, the molecule's structural units--amino acids--must fold into a three-dimensional structure that aligns its active regions with corresponding receptor sites on a target cell or antigen.

If misfolding occurs, a potent and safe treatment may become ineffective, or worse, provoke a dangerous or fatal immune reaction. High-resolution spectral analysis--imaging at the atomic level where even the bonds between hydrogen and carbon atoms are distinguishable--is required to precisely define the mAb's structure and determine if the protein is folding properly.

"We refer to this as 'measuring fingerprints,' because just as a person has a unique set of fingerprint patterns, each mAb has a one-of-a-kind spectral makeup," says NIST research chemist Robert Brinson. "If we can map that spectral fingerprint, we can determine whether or not folding is occurring as desired."

To do this, the IBBR team turned to a solution that would surprise most biopharmaceutical experts: two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. NMR is a technique that measures the atomic signature of a molecule similar to how doctors use magnetic resonance imaging (MRI) to noninvasively view organs. "To date, it's been assumed that 2D NMR could not be practically applied to monoclonal antibodies because it's too insensitive, too time intensive and too expensive for analyzing anything other than much smaller drug molecules," Brinson explains.

In pushing the boundaries of the technique, the IBBR team used an NMR system with a high magnetic field strength to produce the first 2D NMR map of a complete, drug-like mAb.** The map was generated using signals from methyl groups.

"Methyl groups are dispersed throughout the mAb structure and, in particular, in the folded cores of the molecule that we want to evaluate," Brinson says. "We can use their signals to yield a specific spectral fingerprint that reflects the unique structure of the mAb."

To make the 2D NMR method more accessible to the lower-strength magnetic field instruments found in most analytical research labs, the IBBR team narrowed the analysis by dividing its sample antibody into two structural fragments."We mapped the 2D NMR signals generated by the subset of methyl groups found in these fragments, both about a third of the size of the entire protein," Brinson says. "The sum of the data gained from this analysis was found to be a good proxy for the spectral fingerprint of the full mAb."

The new 2D NMR fingerprinting method also overcomes the problems of cost and time. "We reduced the time needed for our measurements from many hours to about 30 minutes," Brinson says.

Brinson says that he and his colleagues are now working on a statistical method that will allow users of their 2D NMR methodology to compare fingerprints from multiple protein samples. "With that ability, manufacturers will be able to quantitatively show that spectra obtained from different lots of the same drug product are identical, enabling them to better meet regulatory requirements for quality and performance," he says.

###

* L.W. Abrogast, R.G. Brinson and J.P. Marino. Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Analytical Chemistry, 87: 3556-3561 (2015). DOI: 10.1021/ac504804m

** The monoclonal antibody used in this experiment is NISTmAb, an immunoglobulin G type 1 donated by MedImmune and being developed by NIST as a reference material.

Media Contact

Michael E. Newman
michael.newman@nist.gov
301-975-3025

 @usnistgov

http://www.nist.gov 

Michael E. Newman | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>