Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists track evolution of a superbug

18.03.2014

Sequencing reveals genetic diversity in hospital-acquired bacterium

Using genome sequencing, National Institutes of Health (NIH) scientists and their colleagues have tracked the evolution of the antibiotic-resistant bacterium Klebsiella pneumoniae sequence type 258 (ST258), an important agent of hospital-acquired infections.

While researchers had previously thought that ST258 K. pneumoniae strains spread from a single ancestor, the NIH team showed that the strains arose from at least two different lineages. The investigators also found that the key difference between the two groups lies in the genes involved in production of the bacterium's outer coat, the primary region that interacts with the human immune system.

Their results, which appear online in Proceedings of the National Academy of Sciences, promise to help guide the development of new strategies to diagnose, prevent and treat this emerging public health threat.

ST258 K. pneumoniae is the predominant cause of human infections among bacteria classified as carbapenem-resistant Enterobacteriaceae (CRE), which kill approximately 600 people annually in the United States and sicken thousands more. Most CRE infections occur in hospitals and long-term care facilities among patients who are already weakened by unrelated disease or have undergone certain medical procedures.

In the new study, scientists from the NIH's National Institute of Allergy and Infectious Diseases (NIAID) and their colleagues sequenced the complete genomes of ST258 K. pneumoniae strains collected from two patients in New Jersey hospitals. By comparing these reference genomes with gene sequences from an additional 83 clinical ST258 K. pneumoniae isolates, the scientists found that the strains divided broadly into two distinct groups, each with its own evolutionary history.

Further analysis revealed that most differences between the two groups occur in a single "hotspot" of the genome containing genes that produce parts of the bacterium's outer shell. The investigators plan to further study how these genetic differences may affect the bacterium's ability to evade the human immune system.

The findings from this study highlight the wealth of information that can be gained from genome sequencing. They also demonstrate the importance of sequencing to the surveillance and accurate tracking of bacterial spread.

Study collaborators included NIAID-funded scientists from Public Health Research Institute and New Jersey Medical School-Rutgers University, as well as researchers from Case Western Reserve University, the Houston Methodist Research Institute and Hospital System and NIAID's Rocky Mountain Laboratories, where the comparative genome sequencing took place.

###

ARTICLE: F DeLeo et al. Molecular dissection of the evolution of carbapenem-resistant ST258 Klebsiella pneumoniae. Proceedings of the National Academy of Sciences DOI:10.1073/PNAS.1321364111 (2014).

Frank R. DeLeo, Ph.D., chief of NIAID's Laboratory of Human Bacterial Pathogenesis, is available to comment on the study.

CONTACT: To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®

Ken Pekoc | EurekAlert!

Further reports about: Allergy Health Human Infectious Klebsiella NIAID NIH diseases infections investigators strains superbug

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

Genetic diversity helps protect against disease

23.05.2018 | Life Sciences

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>