Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIH scientists track evolution of a superbug


Sequencing reveals genetic diversity in hospital-acquired bacterium

Using genome sequencing, National Institutes of Health (NIH) scientists and their colleagues have tracked the evolution of the antibiotic-resistant bacterium Klebsiella pneumoniae sequence type 258 (ST258), an important agent of hospital-acquired infections.

While researchers had previously thought that ST258 K. pneumoniae strains spread from a single ancestor, the NIH team showed that the strains arose from at least two different lineages. The investigators also found that the key difference between the two groups lies in the genes involved in production of the bacterium's outer coat, the primary region that interacts with the human immune system.

Their results, which appear online in Proceedings of the National Academy of Sciences, promise to help guide the development of new strategies to diagnose, prevent and treat this emerging public health threat.

ST258 K. pneumoniae is the predominant cause of human infections among bacteria classified as carbapenem-resistant Enterobacteriaceae (CRE), which kill approximately 600 people annually in the United States and sicken thousands more. Most CRE infections occur in hospitals and long-term care facilities among patients who are already weakened by unrelated disease or have undergone certain medical procedures.

In the new study, scientists from the NIH's National Institute of Allergy and Infectious Diseases (NIAID) and their colleagues sequenced the complete genomes of ST258 K. pneumoniae strains collected from two patients in New Jersey hospitals. By comparing these reference genomes with gene sequences from an additional 83 clinical ST258 K. pneumoniae isolates, the scientists found that the strains divided broadly into two distinct groups, each with its own evolutionary history.

Further analysis revealed that most differences between the two groups occur in a single "hotspot" of the genome containing genes that produce parts of the bacterium's outer shell. The investigators plan to further study how these genetic differences may affect the bacterium's ability to evade the human immune system.

The findings from this study highlight the wealth of information that can be gained from genome sequencing. They also demonstrate the importance of sequencing to the surveillance and accurate tracking of bacterial spread.

Study collaborators included NIAID-funded scientists from Public Health Research Institute and New Jersey Medical School-Rutgers University, as well as researchers from Case Western Reserve University, the Houston Methodist Research Institute and Hospital System and NIAID's Rocky Mountain Laboratories, where the comparative genome sequencing took place.


ARTICLE: F DeLeo et al. Molecular dissection of the evolution of carbapenem-resistant ST258 Klebsiella pneumoniae. Proceedings of the National Academy of Sciences DOI:10.1073/PNAS.1321364111 (2014).

Frank R. DeLeo, Ph.D., chief of NIAID's Laboratory of Human Bacterial Pathogenesis, is available to comment on the study.

CONTACT: To schedule interviews, please contact Ken Pekoc, (301) 402-1663,

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

NIH...Turning Discovery Into Health®

Ken Pekoc | EurekAlert!

Further reports about: Allergy Health Human Infectious Klebsiella NIAID NIH diseases infections investigators strains superbug

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>