Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists identify most proteins made by parasitic worm

24.05.2011
Findings may inform new ways to prevent, treat elephantiasis

A team led by Thomas B. Nutman, M.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has completed a large-scale analysis of most of the proteins produced by Brugia malayi, one kind of parasitic worm that causes lymphatic filariasis, or elephantiasis. The greatly swollen lower limbs that can result from chronic infection with this mosquito-borne parasite can be severely disabling.

The investigators characterized 7,103 proteins produced in various stages of the worm's lifecycle, including male and female adult forms that live in the body's lymphatic system; asexual stages that circulate in human blood; and the larval stage that first infects humans.

The nature and relative amounts of proteins produced during successive stages of the worm's lifecycle provide clues to their likely importance in creating and maintaining infection. For example, proteins made in abundance by larval worms might serve as targets for developing vaccines to prevent infections. Proteins made in large amounts by adult worms might serve as targets for developing drugs to treat infections and potentially halt transmission of the parasite from an infected person to a potential mosquito carrier.

In addition to identifying the worm-made proteins, the team also characterized most of the proteins made by Wolbachia, bacteria that live inside B. malayi. Human inflammatory immune responses to the combined presence of Wolbachia and B. malayi are thought to be responsible for many symptoms of lymphatic filariasis.

Sequencing of the B. malayi genome, which enabled this research on the worm's proteins to be carried out, was completed by National Institutes of Health-funded researchers in 2007.

ARTICLE: S Bennuru et al. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proceedings of the National Academy of Sciences USA Early Edition DOI: 10.1073/pnas.1011481108 (2011).

WHO: Thomas B. Nutman, M.D., deputy chief, Laboratory of Parasitic Diseases, NIAID, is available to discuss this paper.

CONTACT: To schedule interviews, please contact Anne A. Oplinger, 301-402-1663, aoplinger@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>