Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists identify protective role for antibodies in Ebola vaccine study

15.01.2013
WHAT:
Researchers at the National Institutes of Health (NIH) and Oregon Health & Science University (OHSU) have found that an experimental vaccine elicits antibodies that can protect nonhuman primates from Ebola virus infection. Ebola virus causes severe hemorrhagic fever in humans and nonhuman primates, meaning that infection may lead to shock, bleeding and multi-organ failure. According to the World Health Organization, Ebola hemorrhagic fever has a fatality rate of up to 90 percent. There is no licensed treatment or vaccine for Ebola virus infection.

Several research groups have developed experimental vaccine approaches that protect nonhuman primates from Ebola virus and the closely related Marburg virus. These approaches include vaccines based on DNA, recombinant adenovirus, virus-like particles, and human parainfluenza virus 3. But how these vaccine candidates confer protection is an area that is still being explored: Do they activate immune cells to kill the invading virus? Or do they elicit antibodies that block infection?

In this study, scientists at NIH's National Institute of Allergy and Infectious Diseases and OHSU's Vaccine & Gene Therapy Institute built on earlier work with an experimental vaccine composed of an attenuated vesicular stomatitis virus carrying a gene that codes for an Ebola virus protein. They observed how cynomolgus macaques responded to a challenge of Ebola virus before and during treatment with the vaccine and in conjunction with depleted levels of immune cells. Their results showed that important immune cells—CD4+ T cells and CD8+ T cells—had a minimal role in providing protection, while antibodies induced by the vaccine appeared to be critical to protecting the animals.

The scientists say this finding will help improve future Ebola virus vaccine development. They plan to focus their studies on what level of antibody production is needed to establish protection from Ebola virus infection in humans.

ARTICLE:
A Marzi et al. Antibodies are necessary for rVSV/ZEBOV-GP mediated protection against lethal Ebola virus challenge in nonhuman primates. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1209591110 (2013).
WHO:
Heinz Feldmann, M.D., Ph.D., chief of the Laboratory of Virology at NIAID's Rocky Mountain Laboratories. Dr. Feldmann is an expert on viral hemorrhagic fevers and emerging viruses.
CONTACT:
To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov
http://www.nih.gov

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>