Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists find promising biomarker for predicting HPV-related oropharynx cancer

18.06.2013
Researchers have found that antibodies against the human papillomavirus (HPV) may help identify individuals who are at greatly increased risk of HPV-related cancer of the oropharynx, which is a portion of the throat that contains the tonsils.
In their study, at least 1 in 3 individuals with oropharyngeal cancer had antibodies to HPV, compared to fewer than 1 in 100 individuals without cancer. When present, these antibodies were detectable many years before the onset of disease. These findings raise the possibility that a blood test might one day be used to identify patients with this type of cancer.

Genomic structure of HPV
The results of this study, carried out by scientists at the National Cancer Institute (NCI), part of the National Institutes of Health, in collaboration with the International Agency for Research on Cancer (IARC), were published online June 17, 2013, in the Journal of Clinical Oncology.

Historically, the majority of oropharyngeal cancers could be explained by tobacco use and alcohol consumption rather than HPV infection. However, incidence of this malignancy is increasing in many parts of the world, especially in the United States and Europe, because of increased infection with HPV type 16 (HPV16). In the United States it is estimated that more than 60 percent of current cases of oropharyngeal cancer are due to HPV16. Persistent infection with HPV16 induces cellular changes that lead to cancer.

HPV E6 is one of the viral genes that contribute to tumor formation. Previous studies of patients with HPV-related oropharynx cancer found antibodies to E6 in their blood.

... more about:
»Cancer »HPV »HPV16 »IARC »NCI »NIH »blood sample »health services

“Our study shows not only that the E6 antibodies are present prior to diagnosis—but that in many cases, the antibodies are there more than a decade before the cancer was clinically detectable, an important feature of a successful screening biomarker,” said Aimee R. Kreimer, Ph.D., the lead Investigator from the Division of Cancer Epidemiology and Genetics, NCI.

Kreimer and her colleagues tested samples from participants in the European Prospective Investigation into Cancer and Nutrition Study, a long-term study of more than 500,000 healthy adults in 10 European countries. Participants gave a blood sample at the start of the study and have been followed since their initial contribution.

The researchers analyzed blood from 135 individuals who developed oropharyngeal cancer between one and 13 years later, and nearly 1,600 control individuals who did not develop cancer. The study found antibodies against the HPV16 E6 protein in 35 percent of the individuals with cancer, compared to less than 1 percent of the samples from the cancer-free individuals. The blood samples had been collected on average, six years before diagnosis, but the relationship was independent of the time between blood collection and diagnosis. Antibodies to HPV16 E6 protein were even found in blood samples collected more than 10 years before diagnosis.

The scientists also report that HPV16 E6 antibodies may be a biomarker for improved survival, consistent with previous reports. Patients in the study with oropharyngeal cancer who tested positive for HPV16 E6 antibodies prior to diagnosis were 70 percent more likely to be alive at the end of follow-up, compared to patients who tested negative.

“Although promising, these findings should be considered preliminary,” said Paul Brennan, Ph.D., the lead investigator from IARC. “If the predictive capability of the HPV16 E6 antibody holds up in other studies, we may want to consider developing a screening tool based on this result.”

Reference: Kreimer AR, et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. JCO. Online June 17, 2013. DOI: 10.1200/JCO.2012.47.2738.

This research was supported by the NCI Intramural Research Program, the International Agency for Research on Cancer, the Health General Directorate of the French Social Affairs and Health Ministry, and Grant No. FP7-HEALTH-2011- 282562 from the European Commission.

NCI Press Office | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: Cancer HPV HPV16 IARC NCI NIH blood sample health services

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>