Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists find 6 new genetic risk factors for Parkinson's

28.07.2014

Study shows power of combining big data analysis with cutting-edge genomic techniques

Using data from over 18,000 patients, scientists have identified more than two dozen genetic risk factors involved in Parkinson's disease, including six that had not been previously reported. The study, published in Nature Genetics, was partially funded by the National Institutes of Health (NIH) and led by scientists working in NIH laboratories.


Scientists used gene chips to help discover new genes that may be involved with Parkinson's disease.

Credit: Courtesy of the NIH's National Human Genome Research Institute (NHGRI).

"Unraveling the genetic underpinnings of Parkinson's is vital to understanding the multiple mechanisms involved in this complex disease, and hopefully, may one day lead to effective therapies," said Andrew Singleton, Ph.D., a scientist at the NIH's National Institute on Aging (NIA) and senior author of the study.

Dr. Singleton and his colleagues collected and combined data from existing genome-wide association studies (GWAS), which allow scientists to find common variants, or subtle differences, in the genetic codes of large groups of individuals. The combined data included approximately 13,708 Parkinson's disease cases and 95,282 controls, all of European ancestry.

... more about:
»Health »NIA »NIH »Parkinson's »disorders

The investigators identified potential genetic risk variants, which increase the chances that a person may develop Parkinson's disease. Their results suggested that the more variants a person has, the greater the risk, up to three times higher, for developing the disorder in some cases.

"The study brought together a large international group of investigators from both public and private institutions who were interested in sharing data to accelerate the discovery of genetic risk factors for Parkinson's disease," said Margaret Sutherland, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of NIH. "The advantage of this collaborative approach is highlighted in the identification of pathways and gene networks that may significantly increase our understanding of Parkinson's disease."

To obtain the data, the researchers collaborated with multiple public and private organizations, including the U.S. Department of Defense, the Michael J. Fox Foundation, 23andMe and many international investigators.

Affecting millions of people worldwide, Parkinson's disease is a degenerative disorder that causes movement problems, including trembling of the hands, arms, or legs, stiffness of limbs and trunk, slowed movements and problems with posture. Over time, patients may have difficulty walking, talking, or completing other simple tasks. Although nine genes have been shown to cause rare forms of Parkinson's disease, scientists continue to search for genetic risk factors to provide a complete genetic picture of the disorder.

The researchers confirmed the results in another sample of subjects, including 5,353 patients and 5,551 controls. By comparing the genetic regions to sequences on a state-of-the-art gene chip called NeuroX, the researchers confirmed that 24 variants represent genetic risk factors for Parkinson's disease, including six variants that had not been previously identified. The NeuroX gene chip contains the codes of approximately 24,000 common genetic variants thought to be associated with a broad spectrum of neurodegenerative disorders.

"The replication phase of the study demonstrates the utility of the NeuroX chip for unlocking the secrets of neurodegenerative disorders," said Dr. Sutherland. "The power of these high tech, data-driven genomic methods allows scientists to find the needle in the haystack that may ultimately lead to new treatments."

Some of the newly identified genetic risk factors are thought to be involved with Gaucher's disease, regulating inflammation and the nerve cell chemical messenger dopamine as well as alpha-synuclein, a protein that has been shown to accumulate in the brains of some cases of Parkinson's disease. Further research is needed to determine the roles of the variants identified in this study.

###

This work was supported by NIA Intramural Research Program and grants from the NINDS (NS037167, NS071674, NS060113, NS036630, NS17950, NS070867, NS36960), the NIA (AG000949, AG000932, AG008122, AG016495, AG033193, AG031287, AG013846, AG025259, AG023629, AG024826) and the National Institute of Environmental Health Sciences NIEHS (ES101986).

Reference:

Nalls et al. "Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease" Nat. Genetics, July 27, 2014. DOI: 10.1038/ng3043

For more information about neurological disorders and the latest neuroscience research:

http://www.ninds.nih.gov/disorders/parkinsons_disease/parkinsons_disease.htm

http://www.grc.nia.nih.gov/

Additional support was provided by the NIH, Department of Defense, the Michael J Fox Foundation for Parkinson's Research, American Parkinson Disease Association, Barnes Jewish Hospital Foundation, Hersenstichting Nederland, the Prinses Beatrix Fonds, the German Federal Ministry of Education, Science, Research and Technology, the German Federal Ministry of Education and Research, the State of Bavaria, the Initiative and Networking Fund of the Helmholtz Association, the French National Agency of Research, France-Parkinson Association, "Investissements d'avenir", Assistance Publique-Hôpitaux de Paris, the Landspitali University Hospital Research Fund, Icelandic Research Council, European Commission, University of Helsinki, Helsinki University Central Hospital, University of Eastern Finland, the Medical Research Council and Wellcome Trust, National Institute for Health Research (NIHR) Biomedical Research Centre, Parkinson's UK, Coriell Cell Repositories, the King Faisal Specialist Hospital and Research Centre, National Institute for Health Research (NIHR) Biomedical Research Centre, Cure Alzheimer's Fund (CAF), Prize4Life, the National Alliance for Research on Schizophrenia and Depression, EMD Serono, Fidelity Biosciences Research Initiative, the Parkinson's disease foundation, University of Thessaly,the Hellenic Secretariat of Research and Technology, GlaxoSmithKline Greece, the Bumpus foundation, the Internationaal Parkinson Fonds, Netherlands Organization for Scientific Research, Netherlands Organization for Health Research and Development, Parkinson's UK.

NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

The NIA leads the federal government effort conducting and supporting research on aging and the health and well-being of older people. It provides information on age-related cognitive change and neurodegenerative disease specifically at its Alzheimer's Disease Education and Referral (ADEAR) Center at http://www.nia.nih.gov/Alzheimers. Information on health and on aging generally can be found at http://www.nia.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Barbara McMakin | Eurek Alert!

Further reports about: Health NIA NIH Parkinson's disorders

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>