Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIH scientists find 6 new genetic risk factors for Parkinson's


Study shows power of combining big data analysis with cutting-edge genomic techniques

Using data from over 18,000 patients, scientists have identified more than two dozen genetic risk factors involved in Parkinson's disease, including six that had not been previously reported. The study, published in Nature Genetics, was partially funded by the National Institutes of Health (NIH) and led by scientists working in NIH laboratories.

Scientists used gene chips to help discover new genes that may be involved with Parkinson's disease.

Credit: Courtesy of the NIH's National Human Genome Research Institute (NHGRI).

"Unraveling the genetic underpinnings of Parkinson's is vital to understanding the multiple mechanisms involved in this complex disease, and hopefully, may one day lead to effective therapies," said Andrew Singleton, Ph.D., a scientist at the NIH's National Institute on Aging (NIA) and senior author of the study.

Dr. Singleton and his colleagues collected and combined data from existing genome-wide association studies (GWAS), which allow scientists to find common variants, or subtle differences, in the genetic codes of large groups of individuals. The combined data included approximately 13,708 Parkinson's disease cases and 95,282 controls, all of European ancestry.

... more about:
»Health »NIA »NIH »Parkinson's »disorders

The investigators identified potential genetic risk variants, which increase the chances that a person may develop Parkinson's disease. Their results suggested that the more variants a person has, the greater the risk, up to three times higher, for developing the disorder in some cases.

"The study brought together a large international group of investigators from both public and private institutions who were interested in sharing data to accelerate the discovery of genetic risk factors for Parkinson's disease," said Margaret Sutherland, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of NIH. "The advantage of this collaborative approach is highlighted in the identification of pathways and gene networks that may significantly increase our understanding of Parkinson's disease."

To obtain the data, the researchers collaborated with multiple public and private organizations, including the U.S. Department of Defense, the Michael J. Fox Foundation, 23andMe and many international investigators.

Affecting millions of people worldwide, Parkinson's disease is a degenerative disorder that causes movement problems, including trembling of the hands, arms, or legs, stiffness of limbs and trunk, slowed movements and problems with posture. Over time, patients may have difficulty walking, talking, or completing other simple tasks. Although nine genes have been shown to cause rare forms of Parkinson's disease, scientists continue to search for genetic risk factors to provide a complete genetic picture of the disorder.

The researchers confirmed the results in another sample of subjects, including 5,353 patients and 5,551 controls. By comparing the genetic regions to sequences on a state-of-the-art gene chip called NeuroX, the researchers confirmed that 24 variants represent genetic risk factors for Parkinson's disease, including six variants that had not been previously identified. The NeuroX gene chip contains the codes of approximately 24,000 common genetic variants thought to be associated with a broad spectrum of neurodegenerative disorders.

"The replication phase of the study demonstrates the utility of the NeuroX chip for unlocking the secrets of neurodegenerative disorders," said Dr. Sutherland. "The power of these high tech, data-driven genomic methods allows scientists to find the needle in the haystack that may ultimately lead to new treatments."

Some of the newly identified genetic risk factors are thought to be involved with Gaucher's disease, regulating inflammation and the nerve cell chemical messenger dopamine as well as alpha-synuclein, a protein that has been shown to accumulate in the brains of some cases of Parkinson's disease. Further research is needed to determine the roles of the variants identified in this study.


This work was supported by NIA Intramural Research Program and grants from the NINDS (NS037167, NS071674, NS060113, NS036630, NS17950, NS070867, NS36960), the NIA (AG000949, AG000932, AG008122, AG016495, AG033193, AG031287, AG013846, AG025259, AG023629, AG024826) and the National Institute of Environmental Health Sciences NIEHS (ES101986).


Nalls et al. "Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease" Nat. Genetics, July 27, 2014. DOI: 10.1038/ng3043

For more information about neurological disorders and the latest neuroscience research:

Additional support was provided by the NIH, Department of Defense, the Michael J Fox Foundation for Parkinson's Research, American Parkinson Disease Association, Barnes Jewish Hospital Foundation, Hersenstichting Nederland, the Prinses Beatrix Fonds, the German Federal Ministry of Education, Science, Research and Technology, the German Federal Ministry of Education and Research, the State of Bavaria, the Initiative and Networking Fund of the Helmholtz Association, the French National Agency of Research, France-Parkinson Association, "Investissements d'avenir", Assistance Publique-Hôpitaux de Paris, the Landspitali University Hospital Research Fund, Icelandic Research Council, European Commission, University of Helsinki, Helsinki University Central Hospital, University of Eastern Finland, the Medical Research Council and Wellcome Trust, National Institute for Health Research (NIHR) Biomedical Research Centre, Parkinson's UK, Coriell Cell Repositories, the King Faisal Specialist Hospital and Research Centre, National Institute for Health Research (NIHR) Biomedical Research Centre, Cure Alzheimer's Fund (CAF), Prize4Life, the National Alliance for Research on Schizophrenia and Depression, EMD Serono, Fidelity Biosciences Research Initiative, the Parkinson's disease foundation, University of Thessaly,the Hellenic Secretariat of Research and Technology, GlaxoSmithKline Greece, the Bumpus foundation, the Internationaal Parkinson Fonds, Netherlands Organization for Scientific Research, Netherlands Organization for Health Research and Development, Parkinson's UK.

NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

The NIA leads the federal government effort conducting and supporting research on aging and the health and well-being of older people. It provides information on age-related cognitive change and neurodegenerative disease specifically at its Alzheimer's Disease Education and Referral (ADEAR) Center at Information on health and on aging generally can be found at

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

Barbara McMakin | Eurek Alert!

Further reports about: Health NIA NIH Parkinson's disorders

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>