Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists develop new tests to detect drug-resistant malaria

11.09.2013
Developed with French, Cambodian researchers, assays can monitor resistance spread, screen new drugs

WHAT:

Researchers have developed two tests that can discern within three days whether the malaria parasites in a given patient will be resistant or susceptible to artemisinin, the key drug used to treat malaria. The tests were developed by researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, working with French and Cambodian colleagues in Cambodia.

They offer a more rapid, less costly advantage over current drug-responsiveness tests, which require malaria patients to be hospitalized for blood draws every six hours over the course of several days. In both tests, young parasites are briefly exposed to a high dose of artemisinin, mimicking the way parasites are exposed to the drug in people being treated for malaria, and their survival is measured 72 hours later.

The first test is conducted on blood taken from a malaria patient at the same time as the first dose of artemisinin-based combination drug therapy is administered. The test returns results in 72 hours and can predict whether the patient has slow-clearing, drug-resistant parasites. The researchers note that the simple, new test could be used for surveillance studies to monitor and map the emergence or spread of artemisinin-resistant malaria parasites. In the current study, researchers using this test detected artemisinin-resistant parasites at sites in Northern and Eastern Cambodia for the first time.

The second test is conducted on parasites grown in the laboratory. This test requires trained technicians to adapt parasites from a malaria patient to a laboratory culture, synchronize the life-stages of the parasites, and then apply the drug only to those that are three hours old or younger. This test will likely be most useful in future studies designed to elucidate the molecular basis of artemisinin resistance and to screen new malaria drugs.

The study was led by Rick Fairhurst, M.D., Ph.D., of the NIAID Laboratory of Malaria and Vector Research, and Didier Menard, Ph.D., of the Institut Pasteur du Cambodge, Cambodia.

ARTICLE:

B Witkowski et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. The Lancet Infectious Diseases DOI: 10.1016/S1473-3099(13)70252-4 (2013).

WHO:

NIAID Director Anthony S. Fauci, M.D., and Rick M. Fairhurst, M.D., Ph.D., Laboratory of Malaria and Vector Research, NIAID, are available to discuss this research.

CONTACT:

To schedule interviews, please contact Anne A. Oplinger, (301) 402-1663, aoplinger@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical and translational medical research, and is investigating the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>