NIH scientists develop new tests to detect drug-resistant malaria

WHAT:

Researchers have developed two tests that can discern within three days whether the malaria parasites in a given patient will be resistant or susceptible to artemisinin, the key drug used to treat malaria. The tests were developed by researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, working with French and Cambodian colleagues in Cambodia.

They offer a more rapid, less costly advantage over current drug-responsiveness tests, which require malaria patients to be hospitalized for blood draws every six hours over the course of several days. In both tests, young parasites are briefly exposed to a high dose of artemisinin, mimicking the way parasites are exposed to the drug in people being treated for malaria, and their survival is measured 72 hours later.

The first test is conducted on blood taken from a malaria patient at the same time as the first dose of artemisinin-based combination drug therapy is administered. The test returns results in 72 hours and can predict whether the patient has slow-clearing, drug-resistant parasites. The researchers note that the simple, new test could be used for surveillance studies to monitor and map the emergence or spread of artemisinin-resistant malaria parasites. In the current study, researchers using this test detected artemisinin-resistant parasites at sites in Northern and Eastern Cambodia for the first time.

The second test is conducted on parasites grown in the laboratory. This test requires trained technicians to adapt parasites from a malaria patient to a laboratory culture, synchronize the life-stages of the parasites, and then apply the drug only to those that are three hours old or younger. This test will likely be most useful in future studies designed to elucidate the molecular basis of artemisinin resistance and to screen new malaria drugs.

The study was led by Rick Fairhurst, M.D., Ph.D., of the NIAID Laboratory of Malaria and Vector Research, and Didier Menard, Ph.D., of the Institut Pasteur du Cambodge, Cambodia.

ARTICLE:

B Witkowski et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. The Lancet Infectious Diseases DOI: 10.1016/S1473-3099(13)70252-4 (2013).

WHO:

NIAID Director Anthony S. Fauci, M.D., and Rick M. Fairhurst, M.D., Ph.D., Laboratory of Malaria and Vector Research, NIAID, are available to discuss this research.

CONTACT:

To schedule interviews, please contact Anne A. Oplinger, (301) 402-1663, aoplinger@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical and translational medical research, and is investigating the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH…Turning Discovery Into Health®

Media Contact

Anne A. Oplinger EurekAlert!

More Information:

http://www.niaid.nih.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors