Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists describe how salmonella bacteria spread in humans

01.10.2010
New findings by National Institutes of Health scientists could explain how Salmonella bacteria, a common cause of food poisoning, efficiently spread in people.

In a study published this week in the Proceedings of the National Academy of Sciences, researchers describe finding a reservoir of rapidly replicating Salmonella inside epithelial cells. These bacteria are primed to infect other cells and are pushed from the epithelial layer by a new mechanism that frees the Salmonella to infect other cells or be shed into the intestine.

The Centers for Disease Control and Prevention estimate that Salmonella infections sicken 40,000 people each year in the United States, though the actual number of infections is likely much higher because many cases are mild and not diagnosed or reported. Currently, Salmonella is the focus of an ongoing U.S. public health investigation into contaminated chicken eggs.

"Unfortunately, far too many people have experienced the debilitating effects of Salmonella, which cause disease via largely unexplained processes, including overactive inflammatory responses," says Anthony S. Fauci, M.D., director of NIH's National Institute of Allergy and Infectious Diseases (NIAID). "This elegant study provides new insight into the origins of that inflammatory disease process."

While much is known about the human infectious cycle of Salmonella, scientists have yet to understand how the bacteria escape the gut to spread infection. Epithelial cells line the outer and inner surfaces of the body, such as the skin and gut, and form a continuous protective tissue against infection. But Salmonella have learned how to live inside epithelial cells and use them for their benefit. Salmonella protect themselves within special membrane-bound compartments, called vacuoles, inside gut epithelial cells.

Using special high-resolution microscopes to view laboratory-grown human intestinal epithelial cells and laboratory mice infected with Salmonella, an NIAID research group led by Olivia Steele-Mortimer, Ph.D., in collaboration with Bruce Vallance, Ph.D., of the University of British Columbia in Vancouver, discovered a secondary population of Salmonella not confined within a vacuole, but instead moving freely inside the epithelial cells. This reservoir of Salmonella is distinct from vacuolar Salmonella. The bacteria multiply much faster; they have long tail-like projections, called flagella, used to move; and they exhibit a needle complex they use to pierce cells and inject their proteins. With these attributes, this population of Salmonella is genetically programmed to invade new cells.

The scientists observed that epithelial cells containing the hyper-replicating, invasive Salmonella are eventually pushed out of the intestinal tissue into the gut cavity, setting the Salmonella free. The mechanism used to push these Salmonella-infected cells into the body cavity resembles the natural mechanism humans use to shed dying or dead epithelial cells from their gut. The scientists believe that Salmonella have hijacked this mechanism to facilitate their own escape.

The human immune system, however, also senses that these are not normal, dying cells in the gut and triggers a response that includes release of interleukin-18, a small protein that sets off an inflammation cascade. Interleukin-18 also is prominent in chronic intestinal inflammation associated with autoimmune disorders, such as inflammatory bowel disease. The effects of interleukin-18 release provide an explanation for the acute intestinal inflammation associated with Salmonella infections.

The scientists hope their research leads to a treatment that prevents the spread of infection. They are focusing on how this specialized population of Salmonella escapes from its membrane-bound compartment to multiply and swim freely in the cell.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: L Knodler et al. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1006098107 (2010).

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>