Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH-funded scientists describe genesis, evolution of H7N9 influenza virus

22.08.2013
WHAT:
An international team of influenza researchers in China, the United Kingdom and the United States has used genetic sequencing to trace the source and evolution of the avian H7N9 influenza virus that emerged in humans in China earlier this year.

The study, published today in Nature, was supported by the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health, and other organizations.

Working in three Chinese provinces, researchers led by Yi Guan, Ph.D., of the University of Hong Kong collected samples from the throats and digestive tracts of chickens, ducks, geese, pigeons and quail. Fecal and water samples from live poultry markets and the natural environment were also collected. From these samples, the researchers isolated several influenza viruses and genetically sequenced those of the H7N9 subtype as well as related H7N7 and H9N2 viruses. These sequences were compared with archived sequences of the same subtypes isolated in southern China between 2000 and 2013. The researchers compared the differences between the two sets of sequences to reconstruct how the H7N9 virus evolved through various species of birds and to determine the origin of genes.

According to their analysis, domestic ducks and chickens played distinct roles in the genesis of the H7N9 virus infecting humans today. Within ducks, and later within chickens, various strains of avian H7N9, H7N7 and H9N2 influenza exchanged genes with one another in different combinations. The resulting H7N9 virus began causing outbreaks among chickens in live poultry markets, from which many humans became infected. Given these results, the authors write, continued surveillance of influenza viruses in birds remains essential.

ARTICLE:

Lam T et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. DOI: 10.1038/nature12515 (2013).

WHO:

NIAID director Anthony S. Fauci, M.D.; David M. Morens, M.D., senior advisor to the NIAID director; and Diane Post, Ph.D., influenza program officer in NIAID's Respiratory Diseases Branch, are available to discuss the findings.

CONTACT:

To schedule interviews, please contact Nalini Padmanabhan, (301) 402-1663, nalini.padmanabhan@nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health ®

Nalini Padmanabhan | EurekAlert!
Further information:
http://www.nih.gov/

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>