Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH-funded researchers use antibody treatment to protect humanized mice from HIV

12.02.2014
NIH-funded scientists have shown that boosting the production of certain broadly neutralizing antibodies can protect humanized mice from both intravenous and vaginal infection with HIV. Humanized mice have immune systems genetically modified to resemble those of humans, making it possible for them to become HIV-infected.

Led by David Baltimore, Ph.D., of the California Institute of Technology, the investigators inserted the genes encoding the NIH-discovered broadly HIV neutralizing antibody VRC01 into a vector, a virus that infects mice but does not cause disease.

In a unique technique known as vectored immunoprophylaxis (VIP), the researchers infected laboratory mice with this altered virus, enabling certain of their cells to produce the antibodies for extended periods.

To test the applicability of this approach to human infections, the researchers used a novel method of repeatedly exposing these mice to low doses of HIV in a manner that mimics human sexual intercourse. In two separate experiments, the investigators assessed protection from infection with two strains of HIV: a standard laboratory strain as well as one that is commonly transmitted among humans.

Two of the 10 mice expressing VRC01 antibodies became infected with the laboratory strain of HIV after 13 to 15 exposures to the virus. In contrast, all nine mice without the antibodies were infected with HIV within six exposures. In the second experiment, researchers used a modified form of the VRC01 antibody, known as VRC07, and challenged the mice with an HIV strain known to be heterosexually transmitted among people.

The mice expressing the VRC07 antibody were completely resistant to infection during repeated intravaginal challenge. Taken together, these results indicate that VIP can protect mice from infection with strains of HIV that cause human disease and suggest that a similar strategy could be developed to reduce transmission in people, the authors write.

ARTICLE: Balazs AB et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nature Medicine. DOI: 10.1038/nm.3471 (2014).

NIAID director Anthony S. Fauci, M.D., is available to discuss the findings.

To schedule interviews, please contact Nalini Padmanabhan, (301) 402-1663, padmanabhannm@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health®

Nalini Padmanabhan | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>