Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nickel isotope may be methane producing microbe biomarker

24.06.2009
Nickel, an important trace nutrient for the single cell organisms that produce methane, may be a useful isotopic marker to pinpoint the past origins of these methanogenic microbes, according to Penn State and University of Bristol, UK, researchers.

"Our data suggest significant potential in nickel stable isotopes for identifying and quantifying methanogenesis on the early Earth," said Vyllinniskii Cameron, recent Penn State Ph.D. recipient in geosciences and astrobiology and currently a post-doctoral fellow at the University of Bristol. "Little is known about the actual timing of the evolution of methane producing organisms or their metabolism. Nickel stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for these methanogens."

Fractionation of an element into its component stable isotopes occurs because each isotope is slightly different in mass. Biological organisms tend to favor one isotope over another and preferentially create stores of heavy or light isotopes that researchers can measure. The presence of a specific isotopic fraction can indicate that a biological process took place. Previous researchers have looked at transition metals other than nickel as potential biomarkers.

"There is a lot of interest in iron and copper isotopes and other metals that microbes use in trace amounts," said Christopher H. House, associate professor of geosciences and director of the Penn State Astrobiology Research Center, part of the NASA Astrobiology Institute. "However, iron goes through oxidation reduction processes with or without a biological component, so there is significant complexity when it is used as a biosignature."

In nature nickel does not seem to be as adversely affected by oxidation reduction changes so isotope fractionation might be more easily attributed to biological processes, such as during microbial assimilation or uptake of metals.

For this work the researchers did not look at ancient fossil cells, but grew modern day archaea in the laboratory, controlling their habitat and recording their rate of methane production. Archaea are single cell microorganisms similar to bacteria but with different evolutionary histories and biochemical pathways. The researchers report their results in today's (June 22) online edition of the Proceedings of the National Academy of Sciences.

Through a grant from the Worldwide Universities Network and a NASA research scholarship, Cameron performed the research, including setting up the protocols for the nickel isotopic system, at the University of Bristol with Derek Vance and Corey Archer, Bristol Isotope Group, department of Earth Sciences.

Cameron first investigated samples representative of the Earth's mantle and crust that were without any biological activity. These samples showed very little variation in nickel isotopic composition. She also analyzed samples from a group of meteorites, which exhibited even less variation. These studies showed that non-biological processes do not significantly fractionate nickel isotopes.

However, isotopic analyses of pure cultures of three archaea -- Methanosarcina barkeri, Methanosarcina acetivorans and Methanococcus jannaschii -- showed that all the archaea fractionated nickel so that the nickel component in the microbe was lighter relative to the starting isotopic value of the growth medium. To test whether non-methanogenic cells would also fractionate nickel, Cameron incubated an archaea that does not produce methane, Pyrobaculum calidifontis, under the same conditions. These cells did not fractionate nickel isotopes.

"While we only tested one non-methanogen and a more diverse suite of microorganisms should be investigated, at this time, it appears that nickel isotopic fractionation produced by microorganisms in general will not be as significant as the fractionation produced by methanogenic archaea," said Cameron.

"It may be possible in the future to test organic rich sedimentary layers from 2.7 billion years ago to see if nickel isotopic fractionation occurred," said House. "Because there are no known bacteria that are methanogenic and because archaea seem to fractionate nickel isotopes, perhaps such work can help pinpoint when these methane producing organisms came into being."

Cameron is currently working on such samples and others. WUN and the NASA Astrobiology Institute supported this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>