Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


News from the Mailroom of the Cell - Max Planck Researchers elucidate mechanism of protein


Cells in an organism communicate with each other via messenger substances. These are often proteins, which after their production inside the cell are transported out of the cell and secreted to the cellular environment. How exactly this export process takes place in detail has remained unclear.

Researchers at the MPI of Biochemistry (MPIB) have now shown in detail how the ‘mailroom of the cell’ sorts a subset of the proteins that are transported out of the cell. “This mechanism regulates the correct sorting of the proteins and is thus essential for the human organism,” said Julia von Blume, research group leader at the MPIB. The results have been published in the Journal of Cell Biology.

Structural model of the human calcium transporter SPCA1: The cofilin binding domain is displayed in purple. The four residues required for direct cofilin binding are indicated as red spheres.

Figure: Dr. Bianca Habermann / Copyright: MPI of Biochemistry

Similarly as we people communicate, our body cells can also exchange brief messages. For this purpose, many of them often use proteins as messengers, such as hormones. These are produced inside the cell and then packed for export in small membrane packages, the vesicles, and sent out from a kind of ‘mailroom’, the so-called Golgi apparatus. But since not all vesicles are destined for export, it is crucial that the proteins are sorted into the correct vesicles. Until now, however, it was unclear how this sorting actually works.

Julia von Blume and her team of the research group “Molecular Basis of Protein Trafficking” at the MPIB are dedicated to finding the answer to this question. In previous studies they showed that the interaction of three proteins is decisive for the sorting process. Actin, a central support and transport molecule, and cofilin, a protein complex, work together. Near the vesicles they bind the calcium transporter SPCA1, which increases the local concentration of calcium. That attracts the corresponding proteins, which are then incorporated into a vesicle and exported from the cell.

In the current publication, the scientists elucidated the specific molecular mechanism underlying these steps. By investigating the individual proteins in isolation as well as in living cells, they were able to precisely decipher their interaction (down to the amino acids).

The new findings not only confirm the previous studies, but are also medically relevant: “This mechanism regulates the correct sorting of the proteins in the Golgi apparatus and is thus essential for the human organism,” said Julia von Blume, illustrating her explanation with an example: “If this process is impaired, severe health problems such as the skin disease Hailey-Hailey can be the result. It is assumed that due to a genetic defect, the calcium transporter SPCA1 does not function and therefore certain proteins that are important for cell-cell communication in the epidermis can no longer be exported from the cell.“ Patients with Hailey-Hailey disease thus suffer from discoloration of the skin, itching and blisters.

In the future, the scientists hope to clarify whether other proteins are involved in the process – always with the objective to ultimately reconstruct the entire process.

Original publication:
C. Kienzle, N. Basnet, A. Crevenna, G. Beck, B. Habermann, N. Mizuno and J. von Blume: Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. Journal of Cell Biology, September 1, 2014.
DOI: 10.1083/jcb.201311052

Dr. Julia von Blume
Molecular Basis of Protein Trafficking
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone: +49 89 8578-2824

Weitere Informationen:
http://Website of the Research Group “Molecular Basis of Protein Trafficking” (Julia von Blume)

Anja Konschak | Max-Planck-Institut

Further reports about: Biochemistry Biology Cell Klopferspitz MPIB Max-Planck-Institut Molecular Protein mechanism organism proteins vesicles

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>