Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly described type of immune cell and T cells share similar path to maturity

15.05.2013
Better understanding of cells' development has implications in study of inflammatory diseases

Labs around the world, and a core group at Penn, have been studying recently described populations of immune cells called innate lymphoid cells (ILCs). Some researchers liken them to foot soldiers that protect boundary tissues such as the skin, the lining of the lung, and the lining of the gut from microbial onslaught. They also have shown they play a role in inflammatory disease, when the body's immune system is too active.

In animal studies, group-2 innate lymphoid cells (ILC2s) confer immunity during a parasitic infection in mice and are also involved in allergic airway inflammation. A team of Perelman School of Medicine, researchers from the Departments of Medicine, Microbiology, Pathology and Laboratory Medicine, and Cancer Biology, found that maturation of ILC2s requires T-cell factor 1 (TCF-1, the product of the Tcf7 gene) to move forward. TCF-1 is protein that binds to specific parts of DNA to control transcription of genetic information from DNA to messenger RNA.

Avinash Bhandoola, PhD, professor of Pathology and Laboratory Medicine, and Qi Yang, PhD, a postdoc in the Bhandoola lab, describe in Immunity that one mechanism used to build ILCs is the same as that in T cells. Both cell types use a protein pathway centered on Notch that the lab of coauthor Warren Pear, MD, PhD, also in the Pathology and Laboratory Medicine, has studied for the last two decades. Other contributing authors are from the laboratory of David Artis, PhD in Microbiology, that are experts in ILC function, and Angela Haczku, MD, PhD, in the Department of Medicine, who focuses on asthma.

But what makes ILCs and T cells different in their final development? T cells are made in the thymus. ILCs don't need the thymus, but researchers don't know exactly where they are produced, just that the thymus isn't essential for their normal development, unlike T cells.

In the Immunity study, mice without the Tcf7 gene also lack ILC2, and were unable to mount an ILC2 immune response. Forced expression of TCF-1 in bone marrow progenitor cells in the mice partially bypassed the requirement for Notch signaling in the generation of ILC2 in the mice. The researchers suggest that transcription factors such as TCF-1 that underlie early steps of T cell development are also implicated in the development of innate lymphoid cells.

The collaborators' next steps are to better understand the basic steps of ILC development and build mouse models to test ILC function. "We want to know where ILCs develop in the body and what progenitor cells give rise to ILCs." says Bhandoola. "If we succeed in constructing mouse models missing different types of ILC, our collaborators can use them to better figure out what these cells do, and perhaps eventually how to control them."

This work was supported by National Institutes of Health Grants AI059621, AI098428, 5T32CA009140-38, T32CA-009140, DP5OD012116, R01AI047833, T32HD007516, 1F31CA165813, AI095466, AI095608, AI097333, and T32-AI007532.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>