Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Improved NIST Reference Material Targets Infant Formula Analysis

28.08.2009
Chemists at the National Institute of Standards and Technology (NIST) have issued a new certified reference material—a standardized sample backed by NIST—for determining the concentrations of vitamins, minerals and other nutrients in infant and adult nutritional formula and similar products.

The new Standard Reference Material (SRM 1849) for Infant/Adult Nutritional Formula, represents a significant improvement over the now discontinued SRM 1846, Infant Formula, which had been offered since 1996.

Proper nutrition is essential for proper development in infants; too much or too little of certain nutrients can be harmful or even fatal. According to NIST chemist Katherine Sharpless, infant formula is one of the most regulated food items in the United States. Manufacturers are bound by the Infant Formula Act of 1980 (Public Law 96-359) to test their formula to ensure that the nutrient levels conform to ranges and minimums as specified in the statute.

NIST researchers chose to replace the older SRM for a number of reasons. The process of obtaining NIST-certified values for a candidate reference material can be lengthy and expensive. When NIST first released SRM 1846, there were a number of other available reference materials that had certified values for elements, so NIST researchers did not measure those values in SRM 1846, publishing them only as “reference values” measured by other laboratories. (NIST does not certify values measured by other institutions.) Moreover, in 1996 NIST did not have in-house methods to certify values for fatty acids, vitamins D and K, and many water-soluble vitamins, so those, too, relied on the work of collaborating laboratories. As a result, NIST released SRM 1846 with only five certified values, 38 reference values and nine information values.

Foremost among the reasons that led to the decision to replace SRM 1846 was the fact that the material no longer presented the same analytical challenge as commercially available formulas. SRMs should ideally be no more and no less difficult to analyze than the material they are intended to simulate.

SRM 1849 is the culmination of NIST researchers’ efforts to expand and improve upon the previous material. The new SRM contains certified values for 43 nutrients, including vitamins, minerals and elements, and 43 reference values for amino acids and nucleotides. According to Sharpless, SRM 1849 is one of the most well-characterized food SRMs that NIST now produces.

NIST SRMs are intended to be used as controls in analytical chemical testing, and certified values simply describe what the SRM contains and are not intended to prescribe what a consumer product should contain. SRM 1849 does not conform to the Infant Formula Act of 1980 and is not intended for consumption.

Standard Reference Materials are among the most widely distributed and used products from NIST. The agency prepares, analyzes and distributes more than a thousand different materials that are used throughout the world to check the accuracy of instruments and test procedures used in manufacturing, clinical chemistry, environmental monitoring, electronics, criminal forensics and dozens of other fields. For more information, see NIST’s SRM Web page at http://ts.nist.gov/measurementservices/referencematerials. For more information on SRM 1849, Infant/Adult Nutritional Formula, see https://www-s.nist.gov/srmors/view_detail.cfm?srm=1849.

Mark Esser | Newswise Science News
Further information:
http://www.nist.gov
http://ts.nist.gov/measurementservices/referencematerials

Further reports about: ACT Analysis Formula NIST SRM Sharpless Target amino acid fatty acid infant nutritional reference

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>