Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified Stem Cells May Hold Clues to Colon Cancer

02.04.2012
Vanderbilt-Ingram Cancer Center researchers have identified a new population of intestinal stem cells that may hold clues to the origin of colorectal cancer.

This new stem cell population, reported March 30 in the journal Cell, appears to be relatively quiescent (inactive) – in contrast to the recent discovery of intestinal stem cells that multiply rapidly – and is marked by a protein, Lrig1, that may act as a “brake” on cell growth and proliferation.

The researchers have also developed a new and clinically relevant mouse model of colorectal cancer that investigators can now use to better understand where and how the disease arises, as well as for probing new therapeutic targets.

Colorectal cancer is the second leading cause of cancer deaths in the United States. These tumors are thought to arise from a series of mutations in intestinal stem cells, which are long-lived, self-renewing cells that gives rise to all cell types in the intestinal tract.

For more than 30 years, scientists believed that intestinal stem cells were primarily quiescent, proliferating only rarely in order to protect the tissue against cancer. Then, in 2007, researchers reported finding a population of intestinal stem cells (marked by the molecule Lgr5) that were highly proliferative.

Those findings “really changed the way we think about intestinal stem cells,” said Robert Coffey, Jr., M.D., Ingram Professor of Cancer Research, co-chair of Vanderbilt’s Epithelial Biology Center and senior author on the study.

“It came to so dominate the field that it raised the question about whether quiescent stem cells even exist…and that’s where we enter into the picture.”

Coffey’s lab studies the epidermal growth factor (EGF) signaling pathway – which includes a family of receptors known as ErbBs – and its role in cancers of epithelial tissues, like the intestinal tract.

Postdoctoral fellow Anne Powell, Ph.D., led the recent experiments showing that Lrig1, a molecule that regulates ErbB activity, is present in intestinal cells that have the qualities of stem cells (self-renewal, and the ability to produce all the cells of the intestine).

“Essentially, what we show is that the Lrig1-expressing cells are stem cells and they are largely quiescent,” Powell said. “We also show that they’re distinct from the Lgr5-expressing stem cells that had become a sort of ‘hallmark’ stem cell population…with different gene expression profiles and different proliferative status.”

They also showed that Lrig1 is not only a marker of intestinal stem cells, but also acts as a tumor suppressor and inhibits the growth and proliferative signals of the ErbB family – acting as a sort of “brake” on cell proliferation that can lead to cancer.

Postdoctoral fellow Yang Wang, Ph.D., eliminated Lrig1 in mice and showed that nearly all of those mice developed intestinal tumors, providing further evidence suggesting that Lrig1 functions as a tumor suppressor.

The findings underscore the importance of ErbB signaling in the behavior of intestinal stem cells from which colorectal cancer may arise.

Most exciting, said Coffey, is that the mouse model his lab has generated as a part of these studies is one of the only mouse models to develop tumors in section of the intestines where most human tumors develop: the colon. One additional advantage of this model, in contrast to others, is that the tumors develop quickly and can be easily monitored with endoscopy, which will make it easier to assess how therapeutic interventions are working.

“We are fairly confident that this will be the ‘go-to’ model to study colon cancer in mice for the foreseeable future,” Coffey said.

Emily Poulin, Jim Higginbotham, Ph.D., and Jeff Franklin, Ph.D., (from the Coffey lab), Kay Washington, M.D., Ph.D., and Yu Shyr, Ph.D., contributed to the research.

The work was funded by grants from the National Cancer Institute and the National Institute of General Medical Sciences of the National Institutes of Health.

Craig Boerner | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>