Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified Stem Cells May Hold Clues to Colon Cancer

02.04.2012
Vanderbilt-Ingram Cancer Center researchers have identified a new population of intestinal stem cells that may hold clues to the origin of colorectal cancer.

This new stem cell population, reported March 30 in the journal Cell, appears to be relatively quiescent (inactive) – in contrast to the recent discovery of intestinal stem cells that multiply rapidly – and is marked by a protein, Lrig1, that may act as a “brake” on cell growth and proliferation.

The researchers have also developed a new and clinically relevant mouse model of colorectal cancer that investigators can now use to better understand where and how the disease arises, as well as for probing new therapeutic targets.

Colorectal cancer is the second leading cause of cancer deaths in the United States. These tumors are thought to arise from a series of mutations in intestinal stem cells, which are long-lived, self-renewing cells that gives rise to all cell types in the intestinal tract.

For more than 30 years, scientists believed that intestinal stem cells were primarily quiescent, proliferating only rarely in order to protect the tissue against cancer. Then, in 2007, researchers reported finding a population of intestinal stem cells (marked by the molecule Lgr5) that were highly proliferative.

Those findings “really changed the way we think about intestinal stem cells,” said Robert Coffey, Jr., M.D., Ingram Professor of Cancer Research, co-chair of Vanderbilt’s Epithelial Biology Center and senior author on the study.

“It came to so dominate the field that it raised the question about whether quiescent stem cells even exist…and that’s where we enter into the picture.”

Coffey’s lab studies the epidermal growth factor (EGF) signaling pathway – which includes a family of receptors known as ErbBs – and its role in cancers of epithelial tissues, like the intestinal tract.

Postdoctoral fellow Anne Powell, Ph.D., led the recent experiments showing that Lrig1, a molecule that regulates ErbB activity, is present in intestinal cells that have the qualities of stem cells (self-renewal, and the ability to produce all the cells of the intestine).

“Essentially, what we show is that the Lrig1-expressing cells are stem cells and they are largely quiescent,” Powell said. “We also show that they’re distinct from the Lgr5-expressing stem cells that had become a sort of ‘hallmark’ stem cell population…with different gene expression profiles and different proliferative status.”

They also showed that Lrig1 is not only a marker of intestinal stem cells, but also acts as a tumor suppressor and inhibits the growth and proliferative signals of the ErbB family – acting as a sort of “brake” on cell proliferation that can lead to cancer.

Postdoctoral fellow Yang Wang, Ph.D., eliminated Lrig1 in mice and showed that nearly all of those mice developed intestinal tumors, providing further evidence suggesting that Lrig1 functions as a tumor suppressor.

The findings underscore the importance of ErbB signaling in the behavior of intestinal stem cells from which colorectal cancer may arise.

Most exciting, said Coffey, is that the mouse model his lab has generated as a part of these studies is one of the only mouse models to develop tumors in section of the intestines where most human tumors develop: the colon. One additional advantage of this model, in contrast to others, is that the tumors develop quickly and can be easily monitored with endoscopy, which will make it easier to assess how therapeutic interventions are working.

“We are fairly confident that this will be the ‘go-to’ model to study colon cancer in mice for the foreseeable future,” Coffey said.

Emily Poulin, Jim Higginbotham, Ph.D., and Jeff Franklin, Ph.D., (from the Coffey lab), Kay Washington, M.D., Ph.D., and Yu Shyr, Ph.D., contributed to the research.

The work was funded by grants from the National Cancer Institute and the National Institute of General Medical Sciences of the National Institutes of Health.

Craig Boerner | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>