Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified B-Cell Selection Process Adds to Our Understanding of Antibody Diversity

11.06.2014

Using high-throughput sequencing, investigators make a surprising discovery about the immune system.

As elite soldiers of the body’s immune response, B cells serve as a vast standing army ready to recognize and destroy invading antigens, including infections and cancer cells. To do so, each new B cell comes equipped with its own highly specialized weapon, a unique antibody protein that selectively binds to specific parts of the antigen. The key to this specialization is the antigen-binding region that tailors each B cell to a particular antigen, determining whether B cells survive boot camp and are selected for maturation and survival, or wash out and die.

Now, using high-throughput sequencing technology and computational and systems biology, investigators from Beth Israel Deaconess Medical Center (BIDMC) have discovered that B cells can be selected for survival independent of their antigen binding regions. Described online this week in the journal Proceedings of the National Academy of Sciences (PNAS), the findings add a surprising new dimension to the understanding of antibody repertoires – each individual’s complement of millions of B cells -- and the potential for shaping these repertoires to better fight disease.

“B cells play essential roles in vaccination, infection, autoimmunity, aging and cancer,” explains senior author Ramy Arnaout, MD, DPhil, an investigator in the Department of Pathology at BIDMC and Assistant Professor of Pathology at Harvard Medical School whose work focuses on the emerging field of high-throughput multimodality immunology, also known as immunomics. “We were surprised and excited to find that B cell survival could be influenced by a non-antigen-binding region of the antibody, specifically the ‘elbow’ region that connects the antigen-binding regions to the signaling domain.”

... more about:
»Antibody »B-cell »BIDMC »CDR3 »elbow »genes

Each new B cell makes its own unique antibody by mixing and matching from a set of a few hundred genes, taking one each from subsets called V, D and J. The most diverse part of an antibody is the region where the three genes come together, a stretch called the third complementarity-determining region, or CDR3.

“CDR3 is thought to be the single most important determinant of antigen binding,” explains Arnaout. As a result, in understanding how the body fights infections and in developing new vaccines, immunologists have primarily focused their attention on CDR3, while considering other parts of the antibody, including the elbow region, to play secondary roles.

In their new study, Arnaout and colleagues sequenced 2.8 million VDJ-recombined heavy-chain genes from immature and mature B-cell subsets in mice. “We initially wanted to ask how selection on CDR3 changed antibody repertoires during B-cell maturation,” says Arnaout. But, unexpectedly, during the course of the investigation, they found they were instead focused on the antibody’s ‘elbow’ region.”

They found that B cells for which antibodies use V genes that encode ‘looser’ elbows were more likely to mature, regardless of their CDR3 sequence. This effect was both distinct from, and larger than previously described maturation-associated changes in CDR3 in the mice. Furthermore, it had a unique source: Differences in the V genes were hard-coded into the genome, as opposed to the mixed-and-matched combination of V, D and J genes that typically differs from B cell to B cell.

“This discovery was a little like going to watch a concert pianist perform and being mesmerized by her fingers only to realize that music was also coming from her elbows,” says Arnaout. “It was something of a shock.”

One explanation for how this “loose elbow” promotes survival relates to the bending process of the antibody. “B-cell selection and maturation depend on signaling,” he explains. “Antigen binding is the signal, but for it to get to the cell it has to go through the elbow. It, therefore, makes sense that previous experiments have found that disrupting the elbow abolishes signaling without affecting antigen binding. We think a loose elbow might affect how the cell perceives binding, which then determines whether the B-cell soldiers are able to divide and form an elite antigen-fighting platoon, or turn in their weapons and retreat.”

Ultimately, the authors write, “This discovery adds a surprising new dimension to the understanding of antibody repertoires and might one day help us shape them ourselves.”

Coauthors include BIDMC investigators Joseph Kaplinsky (first author) and Anthony Li and New York University Medical Center investigators Amy Sun, Maryaline Coffre and Sergei B. Koralov (co-senior author.) Coffre and Koralov were supported by a grant from the Beckman Foundation.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

The BIDMC health care team includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Bonnie Prescott | newswise

Further reports about: Antibody B-cell BIDMC CDR3 elbow genes

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>