Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified B-Cell Selection Process Adds to Our Understanding of Antibody Diversity

11.06.2014

Using high-throughput sequencing, investigators make a surprising discovery about the immune system.

As elite soldiers of the body’s immune response, B cells serve as a vast standing army ready to recognize and destroy invading antigens, including infections and cancer cells. To do so, each new B cell comes equipped with its own highly specialized weapon, a unique antibody protein that selectively binds to specific parts of the antigen. The key to this specialization is the antigen-binding region that tailors each B cell to a particular antigen, determining whether B cells survive boot camp and are selected for maturation and survival, or wash out and die.

Now, using high-throughput sequencing technology and computational and systems biology, investigators from Beth Israel Deaconess Medical Center (BIDMC) have discovered that B cells can be selected for survival independent of their antigen binding regions. Described online this week in the journal Proceedings of the National Academy of Sciences (PNAS), the findings add a surprising new dimension to the understanding of antibody repertoires – each individual’s complement of millions of B cells -- and the potential for shaping these repertoires to better fight disease.

“B cells play essential roles in vaccination, infection, autoimmunity, aging and cancer,” explains senior author Ramy Arnaout, MD, DPhil, an investigator in the Department of Pathology at BIDMC and Assistant Professor of Pathology at Harvard Medical School whose work focuses on the emerging field of high-throughput multimodality immunology, also known as immunomics. “We were surprised and excited to find that B cell survival could be influenced by a non-antigen-binding region of the antibody, specifically the ‘elbow’ region that connects the antigen-binding regions to the signaling domain.”

... more about:
»Antibody »B-cell »BIDMC »CDR3 »elbow »genes

Each new B cell makes its own unique antibody by mixing and matching from a set of a few hundred genes, taking one each from subsets called V, D and J. The most diverse part of an antibody is the region where the three genes come together, a stretch called the third complementarity-determining region, or CDR3.

“CDR3 is thought to be the single most important determinant of antigen binding,” explains Arnaout. As a result, in understanding how the body fights infections and in developing new vaccines, immunologists have primarily focused their attention on CDR3, while considering other parts of the antibody, including the elbow region, to play secondary roles.

In their new study, Arnaout and colleagues sequenced 2.8 million VDJ-recombined heavy-chain genes from immature and mature B-cell subsets in mice. “We initially wanted to ask how selection on CDR3 changed antibody repertoires during B-cell maturation,” says Arnaout. But, unexpectedly, during the course of the investigation, they found they were instead focused on the antibody’s ‘elbow’ region.”

They found that B cells for which antibodies use V genes that encode ‘looser’ elbows were more likely to mature, regardless of their CDR3 sequence. This effect was both distinct from, and larger than previously described maturation-associated changes in CDR3 in the mice. Furthermore, it had a unique source: Differences in the V genes were hard-coded into the genome, as opposed to the mixed-and-matched combination of V, D and J genes that typically differs from B cell to B cell.

“This discovery was a little like going to watch a concert pianist perform and being mesmerized by her fingers only to realize that music was also coming from her elbows,” says Arnaout. “It was something of a shock.”

One explanation for how this “loose elbow” promotes survival relates to the bending process of the antibody. “B-cell selection and maturation depend on signaling,” he explains. “Antigen binding is the signal, but for it to get to the cell it has to go through the elbow. It, therefore, makes sense that previous experiments have found that disrupting the elbow abolishes signaling without affecting antigen binding. We think a loose elbow might affect how the cell perceives binding, which then determines whether the B-cell soldiers are able to divide and form an elite antigen-fighting platoon, or turn in their weapons and retreat.”

Ultimately, the authors write, “This discovery adds a surprising new dimension to the understanding of antibody repertoires and might one day help us shape them ourselves.”

Coauthors include BIDMC investigators Joseph Kaplinsky (first author) and Anthony Li and New York University Medical Center investigators Amy Sun, Maryaline Coffre and Sergei B. Koralov (co-senior author.) Coffre and Koralov were supported by a grant from the Beckman Foundation.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

The BIDMC health care team includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

Bonnie Prescott | newswise

Further reports about: Antibody B-cell BIDMC CDR3 elbow genes

More articles from Life Sciences:

nachricht Molecular Spies Sabotage a Protein's Activities in Specific Cellular Compartments
20.04.2015 | Johns Hopkins Medicine

nachricht Evolution puts checks on virgin births
20.04.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015 | Physics and Astronomy

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

20.04.2015 | Architecture and Construction

STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC

20.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>