Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly explored bacteria reveal some huge RNA surprises

03.12.2009
Yale University researchers have found very large RNA structures within previously unstudied bacteria that appear crucial to basic biological functions such as helping viruses infect cells or allowing genes to "jump" to different parts of the chromosome.

These exceptionally large RNA molecules have been discovered using DNA sequence data available within the past few years. The findings, reported in the December 3 issue of the journal Nature, suggest many other unusual RNAs remain to be found as researchers explore the genes of more species of bacteria, said Ronald Breaker, senior author of the paper and professor of Molecular, Cellular and Developmental Biology

"Our work reveals new classes of large RNAs exist, which would be akin to protein scientists finding new classes of enzymes," said Breaker, a Howard Hughes Medical Institute investigator. "Since we have only scratched the surface when it comes to examining microbial DNA that is covering the planet – there will certainly be many more large RNAs out there to discover and these newfound RNAs are also likely to have amazing functions as well."

The RNA molecules rank among the largest and most sophisticated RNAs yet discovered and may act like enzymes or carry out other complex functions in bacteria. The RNAs are found in bacteria which have yet to be grown in labs and so have been difficult to study.

RNA, or ribonucleic acid, is a chemical related to DNA. (Move definition up) RNA molecules are best known for carrying information from genes encoded in DNA to ribosomes, which are the protein-manufacturing machines of cells. However, some RNAs are not passive messengers, but form intricate structures that function like enzymes. For example, ribosomes are constructed using the two largest structured RNAs in bacteria that together function as the chemical factory for producing proteins. Yale University's Thomas Steitz won the 2009 Nobel Prize for his work to solve the atomic-resolution structure of ribosomes from bacterial cells. His work helped prove that ribosomes stitch together amino acids to make proteins using large RNAs like enzymes.

Nearly all of the largest structured RNAs previously known had been discovered in the 1970s or earlier. The scientists discovered these new RNAs by analyzing genetic data from poorly studied bacteria that in many cases cannot yet be grown in laboratory conditions. Only a tiny fraction of bacteria in the wild can now be grown in the lab, and scientists have only recently been able to collect genetic data from uncultivated bacteria. Consequently, there is a vast array of bacteria for which genetic data remains unavailable. Many other RNAs likely remain hidden in these under-studied bacteria that also have unusual characteristics that will greatly expand the known roles of RNA in biology.

The Breaker laboratory has used the explosion of DNA sequence information and new computer programs to discover six of the top twelve largest bacterial RNAs just in the last several years. One of the newly discovered RNAs, called GOLLD, is the third largest and most complex RNA discovered to date, and appears to be used by viruses that infect bacteria. Another large RNA revealed in the study, called HEARO, has a genetic structure that suggests it is part of a type of "jumping gene" that can move to new locations in the bacterial chromosome. They also found other RNAs in species of bacteria abundant in the open ocean, and some of these had been identified near Hawaii by researchers from the Massachusetts Institute of Technology. These RNAs are also very common in bacteria that live near the shore of the North American east coast, and so organisms that carry this RNA are likely to be very common in the waters of all the earth's oceans.

The research was funded by Howard Hughes Medical Institute and the National Institutes of Health.

The authors of this paper are Zasha Weinberg, Jonathan Perreault, Michelle M. Meyer and Ronald R. Breaker. All are from Yale. The title of the paper is "Exceptional Structured Noncoding RNAs Revealed by Bacterial Metagenome Analysis."

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>