Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly explored bacteria reveal some huge RNA surprises

03.12.2009
Yale University researchers have found very large RNA structures within previously unstudied bacteria that appear crucial to basic biological functions such as helping viruses infect cells or allowing genes to "jump" to different parts of the chromosome.

These exceptionally large RNA molecules have been discovered using DNA sequence data available within the past few years. The findings, reported in the December 3 issue of the journal Nature, suggest many other unusual RNAs remain to be found as researchers explore the genes of more species of bacteria, said Ronald Breaker, senior author of the paper and professor of Molecular, Cellular and Developmental Biology

"Our work reveals new classes of large RNAs exist, which would be akin to protein scientists finding new classes of enzymes," said Breaker, a Howard Hughes Medical Institute investigator. "Since we have only scratched the surface when it comes to examining microbial DNA that is covering the planet – there will certainly be many more large RNAs out there to discover and these newfound RNAs are also likely to have amazing functions as well."

The RNA molecules rank among the largest and most sophisticated RNAs yet discovered and may act like enzymes or carry out other complex functions in bacteria. The RNAs are found in bacteria which have yet to be grown in labs and so have been difficult to study.

RNA, or ribonucleic acid, is a chemical related to DNA. (Move definition up) RNA molecules are best known for carrying information from genes encoded in DNA to ribosomes, which are the protein-manufacturing machines of cells. However, some RNAs are not passive messengers, but form intricate structures that function like enzymes. For example, ribosomes are constructed using the two largest structured RNAs in bacteria that together function as the chemical factory for producing proteins. Yale University's Thomas Steitz won the 2009 Nobel Prize for his work to solve the atomic-resolution structure of ribosomes from bacterial cells. His work helped prove that ribosomes stitch together amino acids to make proteins using large RNAs like enzymes.

Nearly all of the largest structured RNAs previously known had been discovered in the 1970s or earlier. The scientists discovered these new RNAs by analyzing genetic data from poorly studied bacteria that in many cases cannot yet be grown in laboratory conditions. Only a tiny fraction of bacteria in the wild can now be grown in the lab, and scientists have only recently been able to collect genetic data from uncultivated bacteria. Consequently, there is a vast array of bacteria for which genetic data remains unavailable. Many other RNAs likely remain hidden in these under-studied bacteria that also have unusual characteristics that will greatly expand the known roles of RNA in biology.

The Breaker laboratory has used the explosion of DNA sequence information and new computer programs to discover six of the top twelve largest bacterial RNAs just in the last several years. One of the newly discovered RNAs, called GOLLD, is the third largest and most complex RNA discovered to date, and appears to be used by viruses that infect bacteria. Another large RNA revealed in the study, called HEARO, has a genetic structure that suggests it is part of a type of "jumping gene" that can move to new locations in the bacterial chromosome. They also found other RNAs in species of bacteria abundant in the open ocean, and some of these had been identified near Hawaii by researchers from the Massachusetts Institute of Technology. These RNAs are also very common in bacteria that live near the shore of the North American east coast, and so organisms that carry this RNA are likely to be very common in the waters of all the earth's oceans.

The research was funded by Howard Hughes Medical Institute and the National Institutes of Health.

The authors of this paper are Zasha Weinberg, Jonathan Perreault, Michelle M. Meyer and Ronald R. Breaker. All are from Yale. The title of the paper is "Exceptional Structured Noncoding RNAs Revealed by Bacterial Metagenome Analysis."

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>