Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered plant structure may lead to improved biofuel processing

06.02.2013
When Li Tan approached his colleagues at the University of Georgia with some unusual data he had collected, they initially seemed convinced that his experiment had become contaminated; what he was seeing simply didn't make any sense.
Tan was examining some of the sugars, proteins and polymers that make up plant cell walls, which provide the structural support and protection that allow plants to grow. Yet his samples contained a mixture of sugars that should not be present in the same structure.

However, Tan was convinced that his samples were pure so he and Debra Mohnen, who heads the lab, met again to pore over the data. They came to realize that there were hints in the data of a connection between two different types of cell wall glycans (sugars) and a specific cell wall protein known as arabinogalactan protein. This connection is not known to exist and does not conform to the commonly held scientific definitions of plant cell wall structure.

But Tan and Mohnen, who both work as part of the BioEnergy Science Center, one of three U.S. Department of Energy-funded research centers, were persistent, and they, along with an interdisciplinary team of chemists, molecular biologists and plant experts at UGA, began searching for answers. What they found could redefine our understanding of basic plant biology, and it may lead to significant improvements in the growth and processing of biofuel crops.

"This is totally new," said Tan, a research scientist in the Complex Carbohydrate Research Center and lead author of a paper detailing the group's findings published Jan. 31 in an early online edition of The Plant Cell. "We had never seen linkages between these structures before, and we had to develop a variety of new tests to prove that what we saw was not simply a mistake or a contamination."

The scientific community generally agrees that complex sugars like pectin and xylan, which allow for cell wall structure, extension and growth, exist in separate networks from cell wall proteins. But the UGA researchers have identified a direct and indisputable link between these two domains.

"What this means is that plant scientists' view of the plant cell wall is at least partially wrong," said Mohnen, professor of biochemistry and molecular biology and a member of UGA's Complex Carbohydrate Research Center. "There have been hints over the last 30 or 40 years that this link might exist, but no one has been able to prove it until now."

The discovery has many far-reaching implications beyond the ways it may change biology textbooks. As concerns about the reality of global climate change continue to rise, scientists are working diligently to find useful alternatives to fossil fuel-derived energy.

Biofuels created from cultivated crops like trees and grasses show great promise as a carbon-neutral source of ethanol, but converting plants into fuel that might be used to power automobiles or create heat for homes has proven difficult. Millions of years of evolution have made plants resistant to breakdown, and the sugars needed for fermentation into ethanol are locked inside their complex cell walls.

But Tan and Mohnen are hopeful that their discovery combined with additional research will reveal many of the secrets of plant cell wall architecture and function, making them easier to break down or perhaps opening the doors for engineered plants that will work better as a feedstock for the biofuels industry and as better agricultural products.

"The applications that will emerge from this discovery are enormous," said Mohnen. "It's all going to stem from a refined understanding of how plants are put together and how they are made, but once we know that, we can start modifying them to make them perform in ways that are most advantageous to us."

"We've only just scratched the surface," she said. "But once we investigate this further and we understand the plant exceptionally well, the sky's the limit."

The research was funded through grants from the National Science Foundation and by the BioEnergy Science Center.

Complex Carbohydrate Research Center
The Complex Carbohydrate Research Center was founded at the University of Georgia in 1985 and is one of only three centers worldwide dedicated to the study of complex carbohydrates, which play critical roles in cellular communication, gene expression, immunology, organism defense mechanisms, growth and development. The 140,000-square-foot facility is home to 17 interdisciplinary research groups, including four federally designated centers for carbohydrate research. In addition to UGA research projects, the center also provides analytical services and training to university, government and industrial scientists interested in complex carbohydrate molecules. For more information about the center, see http://ccrc.uga.edu.

Debra Mohnen | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht New Technique Maps Elusive Chemical Markers on Proteins
03.07.2015 | Salk Institute for Biological Studies

nachricht New approach to targeted cancer therapy
03.07.2015 | CECAD - Cluster of Excellence at the University of Cologne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>