Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered plant structure may lead to improved biofuel processing

06.02.2013
When Li Tan approached his colleagues at the University of Georgia with some unusual data he had collected, they initially seemed convinced that his experiment had become contaminated; what he was seeing simply didn't make any sense.
Tan was examining some of the sugars, proteins and polymers that make up plant cell walls, which provide the structural support and protection that allow plants to grow. Yet his samples contained a mixture of sugars that should not be present in the same structure.

However, Tan was convinced that his samples were pure so he and Debra Mohnen, who heads the lab, met again to pore over the data. They came to realize that there were hints in the data of a connection between two different types of cell wall glycans (sugars) and a specific cell wall protein known as arabinogalactan protein. This connection is not known to exist and does not conform to the commonly held scientific definitions of plant cell wall structure.

But Tan and Mohnen, who both work as part of the BioEnergy Science Center, one of three U.S. Department of Energy-funded research centers, were persistent, and they, along with an interdisciplinary team of chemists, molecular biologists and plant experts at UGA, began searching for answers. What they found could redefine our understanding of basic plant biology, and it may lead to significant improvements in the growth and processing of biofuel crops.

"This is totally new," said Tan, a research scientist in the Complex Carbohydrate Research Center and lead author of a paper detailing the group's findings published Jan. 31 in an early online edition of The Plant Cell. "We had never seen linkages between these structures before, and we had to develop a variety of new tests to prove that what we saw was not simply a mistake or a contamination."

The scientific community generally agrees that complex sugars like pectin and xylan, which allow for cell wall structure, extension and growth, exist in separate networks from cell wall proteins. But the UGA researchers have identified a direct and indisputable link between these two domains.

"What this means is that plant scientists' view of the plant cell wall is at least partially wrong," said Mohnen, professor of biochemistry and molecular biology and a member of UGA's Complex Carbohydrate Research Center. "There have been hints over the last 30 or 40 years that this link might exist, but no one has been able to prove it until now."

The discovery has many far-reaching implications beyond the ways it may change biology textbooks. As concerns about the reality of global climate change continue to rise, scientists are working diligently to find useful alternatives to fossil fuel-derived energy.

Biofuels created from cultivated crops like trees and grasses show great promise as a carbon-neutral source of ethanol, but converting plants into fuel that might be used to power automobiles or create heat for homes has proven difficult. Millions of years of evolution have made plants resistant to breakdown, and the sugars needed for fermentation into ethanol are locked inside their complex cell walls.

But Tan and Mohnen are hopeful that their discovery combined with additional research will reveal many of the secrets of plant cell wall architecture and function, making them easier to break down or perhaps opening the doors for engineered plants that will work better as a feedstock for the biofuels industry and as better agricultural products.

"The applications that will emerge from this discovery are enormous," said Mohnen. "It's all going to stem from a refined understanding of how plants are put together and how they are made, but once we know that, we can start modifying them to make them perform in ways that are most advantageous to us."

"We've only just scratched the surface," she said. "But once we investigate this further and we understand the plant exceptionally well, the sky's the limit."

The research was funded through grants from the National Science Foundation and by the BioEnergy Science Center.

Complex Carbohydrate Research Center
The Complex Carbohydrate Research Center was founded at the University of Georgia in 1985 and is one of only three centers worldwide dedicated to the study of complex carbohydrates, which play critical roles in cellular communication, gene expression, immunology, organism defense mechanisms, growth and development. The 140,000-square-foot facility is home to 17 interdisciplinary research groups, including four federally designated centers for carbohydrate research. In addition to UGA research projects, the center also provides analytical services and training to university, government and industrial scientists interested in complex carbohydrate molecules. For more information about the center, see http://ccrc.uga.edu.

Debra Mohnen | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>