Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Molecule Could Deliver Drugs to Treat Diseases

26.09.2012
Kansas State University researchers have discovered a molecule that may be capable of delivering drugs inside the body to treat diseases.

For the first time, researchers have designed and created a membrane-bounded vesicle formed entirely of peptides -- molecules made up of amino acids, the building blocks of protein. The membrane could serve as a new drug delivery system to safely treat cancer and neurodegenerative diseases.

A study led by John Tomich, professor of biochemistry at Kansas State University, has been published in the journal PLOS ONE in September, and a patent for the discovery is pending.

The peptides are a set of self-assembling branched molecules made up of naturally occurring amino acids. The chemical properties of a peptide create a vesicle that Tomich describes as a bubble: It's made up of a thin membrane and is hollow inside. Created in a water solution, the bubble is filled with water rather than air.

The peptides -- or bubbles -- can be made in a solution containing a drug or other molecule that becomes encapsulated as the peptide assembles, yielding a trapped compound, much like a gelatin capsule holds over-the-counter oral remedies. The peptide vesicles could be delivered to appropriate cells in the body to treat diseases and minimize potential side effects.

"We see this as a new way to deliver any kind of molecule to cells," Tomich said. "We know that in certain diseases subpopulations of cells have gone awry, and we'd like to be able to specifically target them instead of attacking every cell, including healthy ones."

The finding could improve gene therapy, which has the potential to cure diseases by replacing diseased cells with healthy ones. Gene therapy is being tested in clinical trials, but the biggest challenge is how best to deliver the genes.

Methods include cells with a virus being injected into the body, and liposomes -- fatty compounds -- carrying the genes. However, these methods may present some problems.

When a virus is used, the body's immune system can attack the virus or cause a tumor. Lipid-based systems may cause inflammation and may not properly bind to cells.

The peptides created by Kansas State University researchers have advantages over their lipid counterparts. The peptides have improved stability and durability, are easier and quicker to create, and they could be delivered to a specific area in the body.

The peptides can be designed to have the ability to target cells, tissues, tumors or organs, and to encapsulate chemical reagents, antibodies, toxins and inhibitors, Tomich said.

"We don't even begin to know all of the potential applications for this discovery," he said. "We envision that many products could be packaged and delivered using these peptides."

Partial funding for the study came from the Kansas State University Johnson Cancer Research Center, National Institutes of Health and Japan Society for the Promotion of Science.

Kansas State University collaborators include Sushanth Gudlur, May 2012 doctoral graduate in biochemistry, who first published the results in a dissertation; Pinakin Sukthankar, doctoral student in biochemistry; Jian Gao, former postdoctoral fellow in the department of biochemistry; Luz Adriana Avila Flores, graduate research assistant in the department of biochemistry; Yasuaki Hiromasa, research assistant professor of biochemistry; and Jianhan Chen, assistant professor of biochemistry. Takeo Iwamoto from the Jikei University School of Medicine in Japan also was a collaborator.

John Tomich | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>