Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered mechanism can explain the Beckwith-Wiedemann syndrome

27.10.2008
Researchers from Uppsala University have discovered a mechanism that silences several genes in a chromosome domain. The findings, published in today’s on-line issue of Molecular Cell, have implications in understanding the human disorder Beckwith-Wiedemann syndrome.

In mammals the cells contain two copies of each chromosome, one inherited from the mother and one from the father. The genes on the chromosomes can either be active or inactive. If a gene is active on the maternal chromosome, the corresponding gene is usually active also on paternal chromosome.

However, in some domains of the chromosome the activity is shut down on one of the chromosomes but not on the other. The genes in these domains cannot be activated the normal way but are completely silenced. The present study shows for the first time how this silencing of several genes on a chromosome is accomplished.

The research group, led by Chandrasekhar Kanduri, has studied a domain with several silenced genes on chromosome 7 in the mouse. The corresponding domain with silenced genes is located on the human chromosome 11. When part of this domain is transcribed a long RNA molecule, Kcnq1ot1-RNA, is formed. This RNA does not give rise to any protein, instead it mediates the silencing of eight to ten genes in a much larger area on the chromosome.

Based on their findings the researchers have suggested a model for how this is accomplished. The Kcnq1ot1-RNA binds to the DNA in the domain and recruits specific enzymes that chemically modify DNA-binding proteins. This modification makes the DNA inaccessible for transcription and thereby the genes cannot be activated. In addition, the Kcnq1ot1-RNA targets the silenced domain to a specific area in the cell nucleus. There it is protected during cell division and the genes will stay silenced also in the daughter cells.

– We show for the first time how a long RNA molecule can establish and maintain silencing of multiple genes in a large domain on the chromosome, says Chandrasekhar Kanduri. The popular belief is that it is only a gene located in the same area as where the long RNA molecule is transcribed from that can be silenced.

This mechanism is important for understanding the genetic disorder Beckwith-Wiedemann Syndrome. In this condition silencing of the chromosome 11 domain does not function properly and both copies of the genes in the domain become inactive, instead of just one. Less protein is produced from the genes, leading to the excess growth characteristics associated with the syndrome: enlargement of organs in the foetus and an increased risk for tumours in the affected organs.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>