Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Mechanism Allows Cells To Change State

10.12.2009
By looking at yeast cells, Jeffrey Laney, assistant professor of biology, has figured out one way in which cells can transform themselves: a cellular “machine” removes a regulatory “lid.” Details are published online in Nature Cell Biology.

Cells are not static. They can transform themselves over time — but change can have dangerous implications. Benign cells, for example, can suddenly change into cancerous ones.

That’s one reason why scientists are trying to figure out why and how cells can shed their old identity and take on a new one. If they can figure out how this happens, researchers may better understand why many different cells — such as stem cells or cells that become cancerous — transform. That, in turn, could someday allow scientists to control the transformative process in a way that might help treat a wide range of diseases.

Jeffrey Laney, assistant professor of biology at Brown University, has identified one way this change takes place by looking at Saccharomyces cerevisae, a common yeast used to make beer and bread. Laney found that a cellular “machine” removes a regulatory “lid” from genes in the cell, so the cell can change its state. Details are published online in Nature Cell Biology, with a print version to come.

“We have known that cells shed their old identity. What we didn’t know is how that mechanism occurred,” said Laney, the paper’s lead author and a resaearcher in the Department of Molecular Biology, Cell Biology and Biochemistry.

The finding could shed new light on many different biological transitions, Laney said, where cells change or evolve as part of their normal functioning.

To conduct the study, Laney and his lab tracked the cellular change that takes place in baker’s yeast. Specifically, they looked at the organism as its “a” cells switched to “alpha” cells in order to self-fertilize. (The process would be analogous to an egg becoming a sperm).

Laney’s team found that a regulatory protein “sits” on genes inside the cell, capping those genes — turning them off — and managing the cell’s identify as a result. Another regulatory molecule can pull that protein off the genes, allowing the genes to be switched on and to transform the cell from the “a” type into the “alpha” type.

Although the genes Laney’s lab studied do not exist in humans, the idea of cellular change by changing a gene expression state from on to off, or off to on, is considered universal in all cells.

Understanding how this process happens normally will allow scientists to gain insight into pathological situations when the cell transformation process goes wrong, Laney said.

Alexander Wilcox, a postdoctoral research associate, is a co-author of the paper.

Laney received funding for the study from the National Institutes of Health and from a March of Dimes Basil O’Connor Starter Scholar Research Award.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>