Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Mechanism Allows Cells To Change State

10.12.2009
By looking at yeast cells, Jeffrey Laney, assistant professor of biology, has figured out one way in which cells can transform themselves: a cellular “machine” removes a regulatory “lid.” Details are published online in Nature Cell Biology.

Cells are not static. They can transform themselves over time — but change can have dangerous implications. Benign cells, for example, can suddenly change into cancerous ones.

That’s one reason why scientists are trying to figure out why and how cells can shed their old identity and take on a new one. If they can figure out how this happens, researchers may better understand why many different cells — such as stem cells or cells that become cancerous — transform. That, in turn, could someday allow scientists to control the transformative process in a way that might help treat a wide range of diseases.

Jeffrey Laney, assistant professor of biology at Brown University, has identified one way this change takes place by looking at Saccharomyces cerevisae, a common yeast used to make beer and bread. Laney found that a cellular “machine” removes a regulatory “lid” from genes in the cell, so the cell can change its state. Details are published online in Nature Cell Biology, with a print version to come.

“We have known that cells shed their old identity. What we didn’t know is how that mechanism occurred,” said Laney, the paper’s lead author and a resaearcher in the Department of Molecular Biology, Cell Biology and Biochemistry.

The finding could shed new light on many different biological transitions, Laney said, where cells change or evolve as part of their normal functioning.

To conduct the study, Laney and his lab tracked the cellular change that takes place in baker’s yeast. Specifically, they looked at the organism as its “a” cells switched to “alpha” cells in order to self-fertilize. (The process would be analogous to an egg becoming a sperm).

Laney’s team found that a regulatory protein “sits” on genes inside the cell, capping those genes — turning them off — and managing the cell’s identify as a result. Another regulatory molecule can pull that protein off the genes, allowing the genes to be switched on and to transform the cell from the “a” type into the “alpha” type.

Although the genes Laney’s lab studied do not exist in humans, the idea of cellular change by changing a gene expression state from on to off, or off to on, is considered universal in all cells.

Understanding how this process happens normally will allow scientists to gain insight into pathological situations when the cell transformation process goes wrong, Laney said.

Alexander Wilcox, a postdoctoral research associate, is a co-author of the paper.

Laney received funding for the study from the National Institutes of Health and from a March of Dimes Basil O’Connor Starter Scholar Research Award.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>