Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Mechanism Allows Cells To Change State

10.12.2009
By looking at yeast cells, Jeffrey Laney, assistant professor of biology, has figured out one way in which cells can transform themselves: a cellular “machine” removes a regulatory “lid.” Details are published online in Nature Cell Biology.

Cells are not static. They can transform themselves over time — but change can have dangerous implications. Benign cells, for example, can suddenly change into cancerous ones.

That’s one reason why scientists are trying to figure out why and how cells can shed their old identity and take on a new one. If they can figure out how this happens, researchers may better understand why many different cells — such as stem cells or cells that become cancerous — transform. That, in turn, could someday allow scientists to control the transformative process in a way that might help treat a wide range of diseases.

Jeffrey Laney, assistant professor of biology at Brown University, has identified one way this change takes place by looking at Saccharomyces cerevisae, a common yeast used to make beer and bread. Laney found that a cellular “machine” removes a regulatory “lid” from genes in the cell, so the cell can change its state. Details are published online in Nature Cell Biology, with a print version to come.

“We have known that cells shed their old identity. What we didn’t know is how that mechanism occurred,” said Laney, the paper’s lead author and a resaearcher in the Department of Molecular Biology, Cell Biology and Biochemistry.

The finding could shed new light on many different biological transitions, Laney said, where cells change or evolve as part of their normal functioning.

To conduct the study, Laney and his lab tracked the cellular change that takes place in baker’s yeast. Specifically, they looked at the organism as its “a” cells switched to “alpha” cells in order to self-fertilize. (The process would be analogous to an egg becoming a sperm).

Laney’s team found that a regulatory protein “sits” on genes inside the cell, capping those genes — turning them off — and managing the cell’s identify as a result. Another regulatory molecule can pull that protein off the genes, allowing the genes to be switched on and to transform the cell from the “a” type into the “alpha” type.

Although the genes Laney’s lab studied do not exist in humans, the idea of cellular change by changing a gene expression state from on to off, or off to on, is considered universal in all cells.

Understanding how this process happens normally will allow scientists to gain insight into pathological situations when the cell transformation process goes wrong, Laney said.

Alexander Wilcox, a postdoctoral research associate, is a co-author of the paper.

Laney received funding for the study from the National Institutes of Health and from a March of Dimes Basil O’Connor Starter Scholar Research Award.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>