Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered Mechanism Allows Cells To Change State

10.12.2009
By looking at yeast cells, Jeffrey Laney, assistant professor of biology, has figured out one way in which cells can transform themselves: a cellular “machine” removes a regulatory “lid.” Details are published online in Nature Cell Biology.

Cells are not static. They can transform themselves over time — but change can have dangerous implications. Benign cells, for example, can suddenly change into cancerous ones.

That’s one reason why scientists are trying to figure out why and how cells can shed their old identity and take on a new one. If they can figure out how this happens, researchers may better understand why many different cells — such as stem cells or cells that become cancerous — transform. That, in turn, could someday allow scientists to control the transformative process in a way that might help treat a wide range of diseases.

Jeffrey Laney, assistant professor of biology at Brown University, has identified one way this change takes place by looking at Saccharomyces cerevisae, a common yeast used to make beer and bread. Laney found that a cellular “machine” removes a regulatory “lid” from genes in the cell, so the cell can change its state. Details are published online in Nature Cell Biology, with a print version to come.

“We have known that cells shed their old identity. What we didn’t know is how that mechanism occurred,” said Laney, the paper’s lead author and a resaearcher in the Department of Molecular Biology, Cell Biology and Biochemistry.

The finding could shed new light on many different biological transitions, Laney said, where cells change or evolve as part of their normal functioning.

To conduct the study, Laney and his lab tracked the cellular change that takes place in baker’s yeast. Specifically, they looked at the organism as its “a” cells switched to “alpha” cells in order to self-fertilize. (The process would be analogous to an egg becoming a sperm).

Laney’s team found that a regulatory protein “sits” on genes inside the cell, capping those genes — turning them off — and managing the cell’s identify as a result. Another regulatory molecule can pull that protein off the genes, allowing the genes to be switched on and to transform the cell from the “a” type into the “alpha” type.

Although the genes Laney’s lab studied do not exist in humans, the idea of cellular change by changing a gene expression state from on to off, or off to on, is considered universal in all cells.

Understanding how this process happens normally will allow scientists to gain insight into pathological situations when the cell transformation process goes wrong, Laney said.

Alexander Wilcox, a postdoctoral research associate, is a co-author of the paper.

Laney received funding for the study from the National Institutes of Health and from a March of Dimes Basil O’Connor Starter Scholar Research Award.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>