Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered kinase regulates cytoskeleton, and perhaps holds key to how cancer cells spread

01.06.2010
UCSD researchers say novel enzyme may provide new target for future anticancer therapies

Scientists at the University of California, San Diego have identified a previously unknown kinase that regulates cell proliferation, shape and migration, and may play a major role in the progression or metastasis of cancer cells.

The research will be published in the May 31 online Early Edition of the Proceedings of the National Academy of Sciences.

Richard L. Klemke, PhD, professor of pathology at the UCSD School of Medicine and the Moores Cancer Center, and colleagues say the new kinase or enzyme regulates the cytoskeleton – the internal framework of tiny filaments and microtubules in cells that gives them shape, coherence and the ability to move.

"This molecule may be an important new target for future anticancer therapies and a clinical biomarker that predicts whether a cancer is likely to spread," said Klemke.

Proper regulation of the cytoskeleton is important to many fundamental cellular functions, including axon/dendrite formation, migration, differentiation and proliferation. Conversely, deregulation of the cytoskeleton can contribute to a variety of human diseases, including cancer metastasis or the spread of tumors to other parts of the body.

The new kinase – called pseudopodium-enriched atypical kinase one or PEAK1 – plays a central role in the formation of cellular pseudopodia. Greek for "false foot," a pseudopodium is a highly specialized structure that protrudes from the surface of migrating cells. It attaches the leading, extending membrane of the cell to its underlying substrate, and then helps pull the cell forward. By endlessly repeating this process, a cell is able to move in a productive manner.

"Cancer cells capitalize on their innate ability to move in this fashion when they metastasize," said Jonathan A. Kelber, PhD, leading author on the paper and postdoctoral fellow in Klemke's lab. "Cancer cells detach from the primary tumor, invade the extracellular milieu and then enter the vascular system from which they can spread and seed new tumors in distant tissues."

Discovering PEAK1 provides researchers with a new player to study and investigate, one that may have significant influence in the biology of cells, particularly cancer cells. Evidence from mouse studies suggests PEAK1 is an important player during tumor growth, and Klemke's team has further demonstrated that PEAK1 levels are increased in primary and metastatic samples from human colon cancer patients. Whether PEAK1 is capable of transforming non-tumor cells into cancer cells remains to be determined.

"One exciting fact is that PEAK1 has kinase activity, which suggests you can design a small molecule drug that would specifically inhibit its activity," said Kelber. "But that work lies in the future. First, we need to fully identify the role of its kinase domain in tumor progression."

Co-authors of the paper with Klemke and Kelber are Yingchun Wang, formerly in the department of pathology and at the Moores Cancer Center, both at UC San Diego and currently at the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences in Beijing; Wei Wang and Jeanne M. Bristow in the department of pathology and at Moores at UCSD; Michael Bouvet in the department of surgery at UCSD and at Moores; Hop S. Tran Cao and Robert M. Hoffman in the department of surgery at UCSD; Greg T. Cantin and John R. Yates III in the department of chemical physiology at The Scripps Research Institute (TRSI); and Rui Lin and Thomas S. Edgington in the department of immunology at TRSI.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>