Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered DNA repair mechanism

05.10.2010
Tucked within its double-helix structure, DNA contains the chemical blueprint that guides all the processes that take place within the cell and are essential for life. Therefore, repairing damage and maintaining the integrity of its DNA is one of the cell’s highest priorities.

Researchers at Vanderbilt University, Pennsylvania State University and the University of Pittsburgh have discovered a fundamentally new way that DNA-repair enzymes detect and fix damage to the chemical bases that form the letters in the genetic code. The discovery is reported in an advanced online publication of the journal Nature on Oct. 1.

“There is a general belief that DNA is rock solid– extremely stable,” says Brandt Eichman, associate professor of biological sciences at Vanderbilt, who directed the project. “Actually DNA is highly reactive.”

On a good day about one million bases in the DNA in a human cell are damaged. These lesions are caused by a combination of normal chemical activity within the cell and exposure to radiation and toxins coming from environmental sources including cigarette smoke, grilled foods and industrial wastes.

“Understanding protein-DNA interactions at the atomic level is important because it provides a clear starting point for designing drugs that enhance or disrupt these interactions in very specific ways,” says Eichman. “So it could lead to improved treatments for a variety of diseases, including cancer.”

The newly discovered mechanism detects and repairs a common form of DNA damage called alkylation. A number of environmental toxins and chemotherapy drugs are alkylation agents that can attack DNA.

When a DNA base becomes alkylated, it forms a lesion that distorts the shape of the molecule enough to prevent successful replication. If the lesion occurs within a gene, the gene may stop functioning. To make matters worse, there are dozens of different types of alkylated DNA bases, each of which has a different effect on replication.

One method to repair such damage that all organisms have evolved is called base excision repair. In BER, special enzymes known as DNA glycosylases travel down the DNA molecule scanning for these lesions. When they encounter one, they break the base pair bond and flip the deformed base out of the DNA double helix. The enzyme contains a specially shaped pocket that holds the deformed base in place while detaching it without damaging the backbone. This leaves a gap (called an “abasic site”) in the DNA that is repaired by another set of enzymes.

Human cells contain a single glycosylase, named AAG, that repairs alkylated bases. It is specialized to detect and delete ethenoadenine bases, which have been deformed by combining with highly reactive, oxidized lipids in the body. AAG also handles many other forms of akylation damage. Many bacteria, however, have several types of glycosylases that handle different types of damage.

“It’s hard to figure out how glycosylases recognize different types of alkylation damage from studying AAG since it recognizes so many,” says Eichman. “So we have been studying bacterial glycosylases to get additional insights into the detection and repair process.”

That is how they discovered the bacterial glycosylase AlkD with its unique detection and deletion scheme. All the known glycosylases work in basically the same fashion: They flip out the deformed base and hold it in a special pocket while they excise it. AlkD, by contrast, forces both the deformed base and the base it is paired with to flip to the outside of the double helix. This appears to work because the enzyme only operates on deformed bases that have picked up an excess positive charge, making these bases very unstable. If left alone, the deformed base will detach spontaneously. But AlkD speeds up the process by about 100 times. Eichman speculates that the enzyme might also remain at the location and attract additional repair enzymes to the site.

AlkD has a molecular structure that is considerably different from that of other known DNA-binding proteins or enzymes. However, its structure may be similar to that of another class of enzymes called DNA-dependent kinases. These are very large molecules that possess a small active site that plays a role in regulating the cells’ response to DNA damage. AlkD uses several rod-like helical structures called HEAT repeats to grab hold of DNA. Similar structures have been found in the portion of DNA-dependent kinases with no known function, raising the possibility that they play an additional, unrecognized role in DNA repair.

The new repair mechanism may also prove to be the key to understanding the differences in the way that the repair enzymes identify and repair toxic and mutagenic lesions. That is important because mutagenic lesions that the repair mechanisms miss are copied to daughter cells and so can spread whereas the deleterious effects of toxic lesions are limited to the original cell.

Understanding these differences could lead to more effective chemotherapy agents, Eichman points out. These drugs are strong alkylating agents designed to induce lesions in a cancer patient’s DNA. Because cancer cells are reproducing more rapidly than the body’s normal cells, the agent kills them preferentially. However, in addition to toxic lesions that kill the cell, the agent also produces lesions that cause mutations, which can lead to additional complications. Additionally, the efficacy of these drugs is low because they are working against the body’s repair mechanisms. If it were possible to design a chemo drug that predominantly creates toxic lesions, however, it should be more effective and have fewer harmful side effects. Alternatively, if we understood how glycosylases recognize alkylation damage, it may be possible to design a drug that specifically inhibits repair of toxic, but not mutagenic, lesions.

Vanderbilt graduate student Emily H. Rubinson, A.S. Prakasha Gowda and Thomas E. Spratt from Pennsylvania State University College of Medicine and Barry Gold from the University of Pittsburgh contributed to the study, which was supported by grants from the American Cancer Society, National Institutes of Health and U.S. Department of Energy.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>