Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Discovered B Cells Suggest Why Women Suffer More Autoimmune Disease

05.08.2011
Researchers at National Jewish Health have discovered a type of cell that may contribute to autoimmune disease. The findings also suggest why diseases such as lupus, multiple sclerosis and rheumatoid arthritis strike women more frequently than men.

The cells, a subset of immune-system B cells, make autoantibodies, which bind to and attack the body’s own tissue. The researchers report in the August 4, 2011, issue of the journal Blood, that they found higher levels of these cells in elderly female mice, young and old mice prone to autoimmune disease, and humans with autoimmune diseases. National Jewish Health has applied for a patent for a method to treat autoimmune disease by depleting these cells.

“We believe these cells could be useful in the diagnosis and treatment of autoimmune diseases, and may help us understand general mechanisms underlying autoimmunity,” said senior author Philippa Marrack, PhD, Professor of Immunology at National Jewish Health and an investigator of the Howard Hughes Medical Institute.

Autoimmune diseases occur when the immune system begins attacking its own tissues rather than external pathogens. Several autoimmune diseases, including lupus, rheumatoid arthritis and multiple sclerosis, afflict women anywhere from two to 10 times as often as they do males. Although sex hormones are known to play a role in autoimmune disease, other factors are involved in these gender differences.

The research team came across the new cells when they were examining differential expression of X-chromosome genes in healthy male and female mice. They discovered a previously undescribed type of B cell, which expressed the cell-surface protein CD11c. The protein is an integrin, which helps cells attach to other cells or to an extracellular matrix. The researchers are not certain what role integrin might play in autoimmunity or if it is merely a marker for another mediator of autoimmunity.

These cells increase as healthy female mice age, but remain at constant low levels in healthy male mice. As a result, the researchers named the cells Age-associated B Cells or ABCs. The researchers also found higher levels of ABCs in young and old mice that are prone to autoimmune disease. They could detect the elevated ABC levels before any disease developed and even before autoantibodies appeared, suggesting a role for these cells in early detection of disease.

The researchers also found an almost identical type of cell in the blood of many human autoimmune patients. In women with rheumatoid arthritis the presence of these cells increased with age.

ABCs in mice produce antibodies against chromatin, the combination of proteins and DNA that make up chromosomes in the cell nucleus. When they depleted the ABCs in mice, autoantibody levels fell, suggesting a potential treatment for autoimmune diseases. National Jewish Health has applied for a patent on the method of depleting the cells to treat autoimmune disease.

The researchers also found that activation of these cells requires stimulation of TLR7, a cell-surface receptor involved in innate immune responses. The gene for TLR7 is located on the X chromosome. Women have two X chromosomes, men an X and a Y chromosome. Normally one copy of the X chromosome in women is silenced so that it does not produce excess protein. But the silencing is not always complete, and women commonly express elevated levels of some X-chromosome genes.

“Not only do these cells appear more frequently in females, their activation depends on a gene of which women have two copies and men only one,” said Anatoly V. Rubtsov, PhD, first author and postdoctoral fellow at National Jewish Health. “This could help us understand why women suffer many autoimmune diseases more often than men.”

William Allstetter | EurekAlert!
Further information:
http://www.njhealth.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>