Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newfound hijacked proteins linked to salmonella virulence

24.08.2011
Scientists have discovered that bacteria like E. coli and Salmonella have a sneaky way of making minor alterations to their genes to boost their chances for infection.

It's a fascinating discovery made at Ohio State University, which is featured in the Aug. 14 issue of Nature Chemical Biology. This discovery shows how bacteria make tweaks in their genes, and their proteins to gain strength.

The team includes research scientist Herve Roy, who joined the University of Central Florida faculty at the College of Medicine this month. He co-authored the paper after conducting research in OSU Professor Michael Ibba's lab.

"Mother Nature tinkers a lot," Roy said from his new lab in Orlando. "Our recent findings illustrate that new proteins in living organisms often evolve from older pre-existing ones, and that evolution updates biochemical mechanisms of living cells by tweaking them a little by applying molecular patches."

The precise role of one protein in bacteria, EF-P, remains a mystery, but this team found that it plays an essential role in the virulence of Salmonella enterica typhimurium, a common foodborne pathogen causing diarrhea, fever, and abdominal cramps, and occasionally lifetime chronic arthritis. Salmonella also accounts for about 400 deaths each year in the United States.

EF-P is known to play a role in protein biosynthesis, which is a keystone mechanism present in all organisms. This process is the chain assembly line that decodes the blue prints stored in the genomes of living organisms, to make all the proteins necessary to sustain life.

The team's research identified a modification born by EF-P that acts as a molecular patch on protein synthesis. The patch seems to increase the bacteria's prowess. Interestingly, the modification on EF-P is made by a hijacked protein, normally involved in the protein synthesis machinery itself.

In the Aug. 14 issue of Nature Chemical Biology, Roy and co-authors identified the chemical nature of the modification that occurs on EF-P. This is critical because in the team's experiments, when the modified version of EF-P is absent, Salmonella doesn't spread.

Because the mechanism by which the modification occurs is unique to bacteria and this system is involved in virulence it could be a potential drug target, Ibba said.

Roy's experience and interest in this area is what drew him to UCF. His lab in the Burnett School of Biomedical Sciences at UCF will use National Institutes of Health funding to explore how some other components of the protein synthesis machinery have been hijacked to accomplish alternate cellular processes. For instance, one process utilizes parts of the protein synthesis machinery to modify components of the bacterial membrane. This mechanism increases bacterial resistance to a large spectrum of antibiotics and presents a good avenue for new drugs that could potentially alleviate or cure many infectious diseases.

"That's why I came to UCF," Roy said. "There is a good team of scientists here working in infectious diseases. There is a good opportunity to collaborate and make a difference."

Other authors on the Nature paper include S. Betty Zou and William W. Navarre from the University of Toronto and Ibba, Tammy J. Bullwinkle, Marla S. Gilreath Benjamin S. Wolfe and Craig J. Forsyth from Ohio State University.

Roy received a Ph.D. in Structural Biochemistry and Molecular Biology from Louis Pasteur University in Strasbourg, France. He spent the past eight years as a post -doctoral research associate and research scientist at The Ohio State University in the laboratory of Dr. Ibba.

UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the second largest in the nation with more than 56,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy. For more information visit http://news.ucf.edu

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>