Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborns' genetic code sends infection distress signal

14.08.2014

Babies suffering from life-threatening bacterial infections such as sepsis could benefit from improved treatment, thanks to a groundbreaking study

Babies suffering from life-threatening bacterial infections such as sepsis could benefit from improved treatment, thanks to a ground-breaking study.

For the first time, researchers have been able to detect and decode a signal generated from a baby's DNA that can tell doctors whether or not a bacterial infection is present in the bloodstream.

The findings could help develop a test for bacterial infection in newborns, using a single drop of blood.

Immediate detection of such infections, which are a major cause of death among young children, is currently impossible as no simple test exists.

Accurate diagnosis of infection could limit overuse of antibiotics, which can lead to drug resistance.

The University of Edinburgh team has identified a signal consisting of 52 molecular characters – like a biological tweet – that is specific to bacterial infection.

The researchers, who have spent the past decade trying to unravel the complexities of blood poisoning and its treatment among premature and full-term babies, say that the genome's signal provides critical, immediate information on the infection.

Using blood samples from newborn babies in Edinburgh, the study investigated thousands of signals written in biological code known as messenger RNAs.

Through meticulous code-breaking the scientists were able to decipher with close to 100 per cent accuracy the signals generated by an infant's genome that specifically tell that they are suffering from sepsis.

Diagnosing sepsis in newborns is extremely difficult, as signs of infection, such as a high temperature, may not occur – or if they do, they may not be due to an infection.

Currently the most reliable way to detect infection is by detecting the bacteria in the blood but this requires a relatively large volume of blood.

An antibody test cannot be used as it only provides historical information about an infant's illness.

Professor Peter Ghazal, Professor of Molecular Genetics and Biomedicine at the University of Edinburgh's Division of Pathway Medicine, explained: "Just as a Twitter user can send a 140 character message so a baby's genome produces short messages or signals that produce code information to communicate with the infant's immune and metabolic systems so that it can fight the infection.

The 52-character 'tweet' or message that we have identified appears to be specific for bacterial but not viral infection. This type of signal could also be used to detect infection in children and adults. We are now working on ways of using a single drop of blood to detect this vital signal. This work is also leading us onto a response to tackling antibiotics resistance."

Dr Claire Smith, Consultant Neonatologist at the Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, added: "This study has the potential to provide real clinical benefits in the future. Despite advances in neonatal care, infection in newborn babies remains a significant issue. Infection is responsible for a significant proportion of neonatal deaths worldwide, and also increases the risk of long-term disability in survivors.

There is a pressing clinical need for more accurate and rapid testing for neonatal infection than is currently available. This work is enabling us to move towards being able to distinguish between babies with true infection who need urgent treatment, and those who are not infected and therefore don't require antibiotics. The potential benefits to babies and their families are important. We are grateful to the families who consented to take part in the study."

###

The paper, which is published in Nature Communications, was supported by the Wellcome Trust, the Chief Scientist Office, EU-FP7, the Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council and the Medical Research Council.

For more information please contact Eleanor Cowie, Press & PR Officer, on tel; +44 131 650 6382 / 0131 242 +44 7794 058 467

Eleanor Cowie | Eurek Alert!
Further information:
http://www.ed.ac.uk

Further reports about: Newborns antibiotics blood distress infections neonatal newborn resistance signals specific

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

Two-dimensional melting of hard spheres experimentally unravelled after 60 years

24.04.2017 | Life Sciences

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>