Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newborns' genetic code sends infection distress signal


Babies suffering from life-threatening bacterial infections such as sepsis could benefit from improved treatment, thanks to a groundbreaking study

Babies suffering from life-threatening bacterial infections such as sepsis could benefit from improved treatment, thanks to a ground-breaking study.

For the first time, researchers have been able to detect and decode a signal generated from a baby's DNA that can tell doctors whether or not a bacterial infection is present in the bloodstream.

The findings could help develop a test for bacterial infection in newborns, using a single drop of blood.

Immediate detection of such infections, which are a major cause of death among young children, is currently impossible as no simple test exists.

Accurate diagnosis of infection could limit overuse of antibiotics, which can lead to drug resistance.

The University of Edinburgh team has identified a signal consisting of 52 molecular characters – like a biological tweet – that is specific to bacterial infection.

The researchers, who have spent the past decade trying to unravel the complexities of blood poisoning and its treatment among premature and full-term babies, say that the genome's signal provides critical, immediate information on the infection.

Using blood samples from newborn babies in Edinburgh, the study investigated thousands of signals written in biological code known as messenger RNAs.

Through meticulous code-breaking the scientists were able to decipher with close to 100 per cent accuracy the signals generated by an infant's genome that specifically tell that they are suffering from sepsis.

Diagnosing sepsis in newborns is extremely difficult, as signs of infection, such as a high temperature, may not occur – or if they do, they may not be due to an infection.

Currently the most reliable way to detect infection is by detecting the bacteria in the blood but this requires a relatively large volume of blood.

An antibody test cannot be used as it only provides historical information about an infant's illness.

Professor Peter Ghazal, Professor of Molecular Genetics and Biomedicine at the University of Edinburgh's Division of Pathway Medicine, explained: "Just as a Twitter user can send a 140 character message so a baby's genome produces short messages or signals that produce code information to communicate with the infant's immune and metabolic systems so that it can fight the infection.

The 52-character 'tweet' or message that we have identified appears to be specific for bacterial but not viral infection. This type of signal could also be used to detect infection in children and adults. We are now working on ways of using a single drop of blood to detect this vital signal. This work is also leading us onto a response to tackling antibiotics resistance."

Dr Claire Smith, Consultant Neonatologist at the Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, added: "This study has the potential to provide real clinical benefits in the future. Despite advances in neonatal care, infection in newborn babies remains a significant issue. Infection is responsible for a significant proportion of neonatal deaths worldwide, and also increases the risk of long-term disability in survivors.

There is a pressing clinical need for more accurate and rapid testing for neonatal infection than is currently available. This work is enabling us to move towards being able to distinguish between babies with true infection who need urgent treatment, and those who are not infected and therefore don't require antibiotics. The potential benefits to babies and their families are important. We are grateful to the families who consented to take part in the study."


The paper, which is published in Nature Communications, was supported by the Wellcome Trust, the Chief Scientist Office, EU-FP7, the Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council and the Medical Research Council.

For more information please contact Eleanor Cowie, Press & PR Officer, on tel; +44 131 650 6382 / 0131 242 +44 7794 058 467

Eleanor Cowie | Eurek Alert!
Further information:

Further reports about: Newborns antibiotics blood distress infections neonatal newborn resistance signals specific

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>