Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborns' genetic code sends infection distress signal

14.08.2014

Babies suffering from life-threatening bacterial infections such as sepsis could benefit from improved treatment, thanks to a groundbreaking study

Babies suffering from life-threatening bacterial infections such as sepsis could benefit from improved treatment, thanks to a ground-breaking study.

For the first time, researchers have been able to detect and decode a signal generated from a baby's DNA that can tell doctors whether or not a bacterial infection is present in the bloodstream.

The findings could help develop a test for bacterial infection in newborns, using a single drop of blood.

Immediate detection of such infections, which are a major cause of death among young children, is currently impossible as no simple test exists.

Accurate diagnosis of infection could limit overuse of antibiotics, which can lead to drug resistance.

The University of Edinburgh team has identified a signal consisting of 52 molecular characters – like a biological tweet – that is specific to bacterial infection.

The researchers, who have spent the past decade trying to unravel the complexities of blood poisoning and its treatment among premature and full-term babies, say that the genome's signal provides critical, immediate information on the infection.

Using blood samples from newborn babies in Edinburgh, the study investigated thousands of signals written in biological code known as messenger RNAs.

Through meticulous code-breaking the scientists were able to decipher with close to 100 per cent accuracy the signals generated by an infant's genome that specifically tell that they are suffering from sepsis.

Diagnosing sepsis in newborns is extremely difficult, as signs of infection, such as a high temperature, may not occur – or if they do, they may not be due to an infection.

Currently the most reliable way to detect infection is by detecting the bacteria in the blood but this requires a relatively large volume of blood.

An antibody test cannot be used as it only provides historical information about an infant's illness.

Professor Peter Ghazal, Professor of Molecular Genetics and Biomedicine at the University of Edinburgh's Division of Pathway Medicine, explained: "Just as a Twitter user can send a 140 character message so a baby's genome produces short messages or signals that produce code information to communicate with the infant's immune and metabolic systems so that it can fight the infection.

The 52-character 'tweet' or message that we have identified appears to be specific for bacterial but not viral infection. This type of signal could also be used to detect infection in children and adults. We are now working on ways of using a single drop of blood to detect this vital signal. This work is also leading us onto a response to tackling antibiotics resistance."

Dr Claire Smith, Consultant Neonatologist at the Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, added: "This study has the potential to provide real clinical benefits in the future. Despite advances in neonatal care, infection in newborn babies remains a significant issue. Infection is responsible for a significant proportion of neonatal deaths worldwide, and also increases the risk of long-term disability in survivors.

There is a pressing clinical need for more accurate and rapid testing for neonatal infection than is currently available. This work is enabling us to move towards being able to distinguish between babies with true infection who need urgent treatment, and those who are not infected and therefore don't require antibiotics. The potential benefits to babies and their families are important. We are grateful to the families who consented to take part in the study."

###

The paper, which is published in Nature Communications, was supported by the Wellcome Trust, the Chief Scientist Office, EU-FP7, the Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council and the Medical Research Council.

For more information please contact Eleanor Cowie, Press & PR Officer, on tel; +44 131 650 6382 / 0131 242 +44 7794 058 467

Eleanor Cowie | Eurek Alert!
Further information:
http://www.ed.ac.uk

Further reports about: Newborns antibiotics blood distress infections neonatal newborn resistance signals specific

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>