Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn Brain Cells “Time-Stamp” Memories

30.01.2009
“Remember when…?” is how many a wistful trip down memory lane begins. But just how the brain keeps tabs on what happened and when is still a matter of speculation.

A computational model developed by scientists at the Salk Institute for Biological Studies now suggests that newborn brain cells—generated by the thousands each day—add a time-related code, which is unique to memories formed around the same time.

“By labeling contemporary events as similar, new neurons allow us to recall events from a certain period,” speculates Fred H. Gage, Ph.D., a professor in the Laboratory for Genetics, who led the study published in the Jan. 29, 2009, issue of the journal Neuron. Unlike the kind of time stamp found on digital photographs, however, the neuronal time code only provides relative time.

Ironically, Gage and his team had not set out to explain how the brain stores temporal information. Instead they were interested in why adult brains continually spawn new brain cells in the dentate gyrus, the entryway to the hippocampus. The hippocampus, a small seahorse-shaped area of the brain, distributes memory to appropriate storage sections in the brain after readying the information for efficient recall.

“At least one percent of all cells in the dentate gyrus are immature at any given time,” explains lead author Brad Aimone, a graduate student in the Computational Neuroscience Program at the University of California, San Diego. “Intuitively we feel that those new brain cells have to be good for something, but nobody really knows what it is.”

Each of these newborn neurons undergoes a prolonged maturation process, during which it changes from hyper-excitable to composed and reaches out to mature brain cells that are already well-connected within the established circuitry. Exercise, learning, and environmental enrichment increase proliferation and survival of new neurons, while pathological (chronic) stress and age send their numbers plummeting. Despite an increasing understanding of how new neurons become part of the existing dentate gyrus network, it is still unclear what their exact function is.

Trying to ascertain the newcomers’ job in adult brains, the Salk researchers took every piece of available biological information and fed it into a computer program designed to simulate the neuronal circuits in the dentate gyrus. “Most modelers test a specific hypothesis and build a model around it,” says Aimone. “We tried not to make any big assumptions about the function of new neurons. Instead we asked, ‘What is the biology, and what does the math suggest?’”

It quickly became clear that overly excitable youngsters respond indiscriminately to incoming information. “The circuit in the dentate gyrus is designed to separate incoming memories into distinct events, a process called pattern separation, but immature cells get into the way by blurring the lines,” says Aimone. “And if they keep muddling the picture, there’s almost no point.”

But nothing lasts forever. Even the most highly strung nerve cells that used to get excited by just about anything will eventually quiet down. As they mature into fully functional granule cells, they take their place in the existing circuitry while the next generation of newborn neurons takes their place firing away at new events.

Yet, independent events that had nothing in common but the fact that they occurred around the same time will now be connected forever in our minds—explaining why discussing the movie we saw a couple of months ago might bring back the name of the café we visited afterward but whose name has been eluding us.

“Current thinking holds that when we bring up a certain memory, it passes back to the dentate gyrus, which pulls all related bits of information from their offsite storage,” says Gage. “Our hypothesis suggests that cells that were easily excitable bystanders when the memory was formed are engaged as well, providing a hyperlink between all events that happened during their hyperactive youth.”

The study was funded by the James S. McDonell Foundation, the Kavli Institute for Brain and Mind, the NSF Temporal Dynamics of Learning Center, and the U.S. National Institutes of Health.

Janet Wiles, Ph.D, a professor at the School of Information Technology and Electrical Engineering, University of Brisbane, Australia, also contributed to the study.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>