Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn Brain Cells “Time-Stamp” Memories

30.01.2009
“Remember when…?” is how many a wistful trip down memory lane begins. But just how the brain keeps tabs on what happened and when is still a matter of speculation.

A computational model developed by scientists at the Salk Institute for Biological Studies now suggests that newborn brain cells—generated by the thousands each day—add a time-related code, which is unique to memories formed around the same time.

“By labeling contemporary events as similar, new neurons allow us to recall events from a certain period,” speculates Fred H. Gage, Ph.D., a professor in the Laboratory for Genetics, who led the study published in the Jan. 29, 2009, issue of the journal Neuron. Unlike the kind of time stamp found on digital photographs, however, the neuronal time code only provides relative time.

Ironically, Gage and his team had not set out to explain how the brain stores temporal information. Instead they were interested in why adult brains continually spawn new brain cells in the dentate gyrus, the entryway to the hippocampus. The hippocampus, a small seahorse-shaped area of the brain, distributes memory to appropriate storage sections in the brain after readying the information for efficient recall.

“At least one percent of all cells in the dentate gyrus are immature at any given time,” explains lead author Brad Aimone, a graduate student in the Computational Neuroscience Program at the University of California, San Diego. “Intuitively we feel that those new brain cells have to be good for something, but nobody really knows what it is.”

Each of these newborn neurons undergoes a prolonged maturation process, during which it changes from hyper-excitable to composed and reaches out to mature brain cells that are already well-connected within the established circuitry. Exercise, learning, and environmental enrichment increase proliferation and survival of new neurons, while pathological (chronic) stress and age send their numbers plummeting. Despite an increasing understanding of how new neurons become part of the existing dentate gyrus network, it is still unclear what their exact function is.

Trying to ascertain the newcomers’ job in adult brains, the Salk researchers took every piece of available biological information and fed it into a computer program designed to simulate the neuronal circuits in the dentate gyrus. “Most modelers test a specific hypothesis and build a model around it,” says Aimone. “We tried not to make any big assumptions about the function of new neurons. Instead we asked, ‘What is the biology, and what does the math suggest?’”

It quickly became clear that overly excitable youngsters respond indiscriminately to incoming information. “The circuit in the dentate gyrus is designed to separate incoming memories into distinct events, a process called pattern separation, but immature cells get into the way by blurring the lines,” says Aimone. “And if they keep muddling the picture, there’s almost no point.”

But nothing lasts forever. Even the most highly strung nerve cells that used to get excited by just about anything will eventually quiet down. As they mature into fully functional granule cells, they take their place in the existing circuitry while the next generation of newborn neurons takes their place firing away at new events.

Yet, independent events that had nothing in common but the fact that they occurred around the same time will now be connected forever in our minds—explaining why discussing the movie we saw a couple of months ago might bring back the name of the café we visited afterward but whose name has been eluding us.

“Current thinking holds that when we bring up a certain memory, it passes back to the dentate gyrus, which pulls all related bits of information from their offsite storage,” says Gage. “Our hypothesis suggests that cells that were easily excitable bystanders when the memory was formed are engaged as well, providing a hyperlink between all events that happened during their hyperactive youth.”

The study was funded by the James S. McDonell Foundation, the Kavli Institute for Brain and Mind, the NSF Temporal Dynamics of Learning Center, and the U.S. National Institutes of Health.

Janet Wiles, Ph.D, a professor at the School of Information Technology and Electrical Engineering, University of Brisbane, Australia, also contributed to the study.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>