Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Work Shines Light on Hox Genes Responsible for Firefly Lantern Development

21.03.2014

Notion that Hox genes acquire new roles quickly, without compromising old ones, is novel

It’s difficult to identify a single evolutionary novelty in the animal kingdom that has fascinated and intrigued mankind more than the lantern of the firefly. Yet to this day, nothing has been known about the genetic foundation for the formation and evolution of this luminescent structure.


ARMIN MOCZEK AND MATTHEW STANSBURY

A firefly's photic organ is functional throughout pupation and glows when the pupa is disturbed.

But now, new work from a former Indiana University Bloomington graduate student and his IU Ph.D. advisor offers for the first time a characterization of the developmental genetic basis of this spectacular morphological novelty -- the firefly’s photic organ -- and the means by which this beetle successfully uses ancient and highly conserved regulatory genes to form its lantern.

“Our study demonstrates unprecedented roles for two Hox genes," said Armin Moczek, associate professor in the College of Arts and Sciences’ Department of Biology and co-author on the paper with his former Ph.D. student Matthew Stansbury, now a postdoc at the University of Arizona. "These genes have been highly conserved over very long evolutionary times to lay out the basic body forms of so many animals, from humans to flies. Our study now shows that on top of that, these Hox genes have recently acquired control over important aspects of lantern development.”

... more about:
»Biology »Firefly »Hox »Shines »beetle »function »genes »insects »traits

Hox genes are famous for specifying body regions and their boundaries, such as the head, thorax and abdomen of insects, or the cervical, thoracic and lumbar vertebrae of mammals. Hox genes are also famous for specifying which appendage will form on a given segment, such as a mouthpart in the head and a wing on the thorax, as well as specific modifications of these appendages: The beetle's forewing is a hardened shell rather than membranous due to the actions of a Hox gene, as is the reduction of the fly's hind wing to a tiny balancer organ.

What is nearly unprecedented, however, is that in the case of this beetle belonging to a family of about 2,000 species, the two Hox genes abdominal-A (abd-A) and Abdominal-B (Abd-B), appear to have acquired the ability to regulate an entirely novel, complex organ found nowhere else: the lantern.

“The notion that Hox genes can simply acquire new responsibilities quickly, especially without compromising old ones, is rather novel,” Moczek said. “This is one of relatively few examples that show that this indeed occurs in animal evolution.”

What Stansbury and Moczek found by down-regulating the function of each of these two genes was that both were required for proper adult photic organ formation.

“In particular, the Abd-B Hox gene was critical to all aspects of photic organ formation, suggesting it has evolved novel lantern-specific regulatory interactions,” Moczek said.


They also found that Abd-B repressed abdominal pigmentation in fireflies' photic organs, thereby creating a translucent cuticle that allows the light to escape the body interior. In addition, the sixth and seventh abdominal segments of most insects is ordinarily under the sole purview of abd-A rather than Abd-B.

However, it is precisely these segments that house the lantern in fireflies, suggesting the possibility of an anterior expansion of the domain of Abd-B function. That’s a big deal because Hox genes, given their hugely important functions in establishing the basic body plan, normally confine themselves to strict and highly conserved boundaries of expression.

“This is just the beginning,” Moczek said. “We want to know what are the target genes with which abd-A and Abd-B interact to form the organ; we want to get data on exactly when and where a given gene product is active; and we want to learn more about how the adult organ evolved from the larval organ, a much simpler structure located on yet another segment,” he added.

Moczek is no stranger to investigating novel traits, and the new work presents another example within his body of work that the possibility exists that Hox-gene mediated innovation -- true, unique innovation -- is more widespread than generally thought. Another example of this is beetle horns, one of Moczek’s primary areas of research: The horns of beetles are a novel trait that lack correspondence to other traits in beetles or insects. Work conducted by his former graduate student Bethany Wasik found that the positioning and growth of horns that come out of the thorax of beetles is regulated in part by the Hox gene Sex-combs-reduced.

And as novel traits are well-understood by Moczek, Hox genes are especially close to IU’s Department of Biology: The homeobox (Hox is the abbreviation) DNA sequence was discovered in 1983 by students in the laboratory of IU Distinguished Professor of Biology Thom Kaufman.

“This study is the first of its kind on these organisms and this structure, and we hope more than anything opens the door for future work on these charismatic insects,” Moczek said.

“The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern,” by Matthew Stansbury, University of Arizona, and Armin Moczek, Indiana University, was published today in the Proceedings of the Royal Society B.

Stephen Chaplin | newswise
Further information:
http://www.iu.edu

Further reports about: Biology Firefly Hox Shines beetle function genes insects traits

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>