Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon of the immune system discovered

14.08.2014

Aryl hydrocarbon receptor binds bacterial toxins and initiates their destruction

Max Planck researchers have discovered a completely new way in which the immune system recognizes pathogens. The aryl hydrocarbon receptor has long been a focus of research for pharma-cologists and toxicologists, as it recognizes environmental toxins.


Contact between tuberculosis pathogen and phagocyte (macrophage). The close contact between the pathogen and defense cell enables pigments such as phthiocol to enter the host cell. The recognition by the aryl hydrocarbon receptor leads to the rapid mobilization of defensive measures.

© MPI for Infection Biology / Volker Brinkmann

However, it also plays an important role in the immune system. A team of scientists headed by Stefan H. E. Kaufmann at the Max Planck Institute for Infection Biology in Berlin has discovered that virulence factors of bacteria which have invaded the body also bind to the aryl hydrocarbon receptor.

As a result, the innate immune response is activated and the factors are immediately broken down. With this finding, the scientists have identified a hitherto unknown component of the immune system: bacterial virulence factors can not only be neutralised by antibodies, but also directly destroyed.

Until now, immune biologists have largely ignored the possibility that the immune system directly destroys bacterial virulence factors. The role of the aryl hydrocarbon receptor, which is expressed in many cells including  immune and epithelial cells, is therefore all the more surprising.

Thus far the receptor was primarily known as a binding site for environmental toxins, among them the extremely harmful TCDD - a dioxin that causes devastating organ damage even in minute concentrations. “However, it occurs in a wide range of organisms from threadworms to insects through to humans. If it is found in so many living organisms, the reason is certainly not just to recognize environmental toxins, but also to defend against infections,” says Pedro Moura-Alves from the Max Planck Institute for Infection Biology.

The researchers therefore set out to identify bacterial molecules with a similar structure as the known binding partners of the aryl hydrocarbon receptor. They found what they were looking for in the form of bacterial pigments that are supposed to protect the pathogens but damage the body.

Mathematical models have shown that both the green-blue phenazines of the bacterium Pseudomonas aeruginosa, which causes nosocomial respiratory infections, and the yellow naphthoquinone phthiocol of the causative agent of tuberculosis Mycobacterium tuberculosis fit in the binding pocket of the receptor.

Experiments in mice then confirmed how important the aryl hydrocarbon receptor is for the immune response. Following infection with the lung pathogens, animals without these receptors develop more severe symptoms, have more bacteria in their lungs and are more likely to die. Evidently, the immune system does not recognize the foe early enough without the aryl hydrocarbon receptor.

“For the pathogen, the bacterial virulence factors are a blessing and a curse at the same time: on the one hand, they facilitate infection of the host organism, but on the other hand, they help the host to track down the microbe,” says Kaufmann.

What is special about the aryl hydrocarbon receptor is that it binds directly the bacterial pigments and then triggers the expression of several genes in the cell nucleus responsible for breaking down the virulence factors. To this end, it migrates from the outside into the interior of the nucleus where it binds to DNA.

The aryl hydrocarbon receptor is therefore a receptor and a transcription factor rolled into one and hence can react promptly to infection. By contrast, other receptors of the immune system have to rely on auxiliary proteins that relay the information about pathogens into the nucleus.

As a next step, the researchers want to find out what other transcription factors the aryl hydrocarbon receptor interacts with and what specific enzymes are responsible for breaking down the bacterial virulence factors.

Contact 

Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann

Max Planck Institute for Infection Biology, Berlin

Phone: +49 30 28460-500
Fax: +49 30 28460-501

 

Dr. Sabine Englich

Max Planck Institute for Infection Biology, Berlin

Phone: +49 30 28460-142

 

Original publication

 
Pedro Moura-Alves, Kellen Faé, Erica Houthuys, Anca Dorhoi, Annika Kreuchwig, Jens Furkert, Nicola Barison, Anne Diehl, Antje Munder, Patricia Constant, Tatsiana Skrahina, Ute Guhlich-Bornhof, Marion Klemm, Anne-Britta Koehler, Silke Bandermann, Christian Goosmann, Hans-Joachim Mollenkopf, Robert Hurwitz, Volker Brinkmann, Simon Fillatreau, Mamadou Daffe, Burkhard Tümmler, Michael Kolbe, Hartmut Oschkinat, Gerd Krause, Stefan H.E. Kaufmann
AhR sensing of bacterial pigments orchestrates antibacterial defense
Nature, 13 August 2014, Advance Online Publication (AOP), doi: 10.1038/nature13684

Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann | Max-Planck-Institute
Further information:
http://www.mpg.de/8356852/AhR-weapon-immune-system

Further reports about: Biology Infection damage pathogens receptor responsible toxins transcription

More articles from Life Sciences:

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>