Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon of the immune system discovered

14.08.2014

Aryl hydrocarbon receptor binds bacterial toxins and initiates their destruction

Max Planck researchers have discovered a completely new way in which the immune system recognizes pathogens. The aryl hydrocarbon receptor has long been a focus of research for pharma-cologists and toxicologists, as it recognizes environmental toxins.


Contact between tuberculosis pathogen and phagocyte (macrophage). The close contact between the pathogen and defense cell enables pigments such as phthiocol to enter the host cell. The recognition by the aryl hydrocarbon receptor leads to the rapid mobilization of defensive measures.

© MPI for Infection Biology / Volker Brinkmann

However, it also plays an important role in the immune system. A team of scientists headed by Stefan H. E. Kaufmann at the Max Planck Institute for Infection Biology in Berlin has discovered that virulence factors of bacteria which have invaded the body also bind to the aryl hydrocarbon receptor.

As a result, the innate immune response is activated and the factors are immediately broken down. With this finding, the scientists have identified a hitherto unknown component of the immune system: bacterial virulence factors can not only be neutralised by antibodies, but also directly destroyed.

Until now, immune biologists have largely ignored the possibility that the immune system directly destroys bacterial virulence factors. The role of the aryl hydrocarbon receptor, which is expressed in many cells including  immune and epithelial cells, is therefore all the more surprising.

Thus far the receptor was primarily known as a binding site for environmental toxins, among them the extremely harmful TCDD - a dioxin that causes devastating organ damage even in minute concentrations. “However, it occurs in a wide range of organisms from threadworms to insects through to humans. If it is found in so many living organisms, the reason is certainly not just to recognize environmental toxins, but also to defend against infections,” says Pedro Moura-Alves from the Max Planck Institute for Infection Biology.

The researchers therefore set out to identify bacterial molecules with a similar structure as the known binding partners of the aryl hydrocarbon receptor. They found what they were looking for in the form of bacterial pigments that are supposed to protect the pathogens but damage the body.

Mathematical models have shown that both the green-blue phenazines of the bacterium Pseudomonas aeruginosa, which causes nosocomial respiratory infections, and the yellow naphthoquinone phthiocol of the causative agent of tuberculosis Mycobacterium tuberculosis fit in the binding pocket of the receptor.

Experiments in mice then confirmed how important the aryl hydrocarbon receptor is for the immune response. Following infection with the lung pathogens, animals without these receptors develop more severe symptoms, have more bacteria in their lungs and are more likely to die. Evidently, the immune system does not recognize the foe early enough without the aryl hydrocarbon receptor.

“For the pathogen, the bacterial virulence factors are a blessing and a curse at the same time: on the one hand, they facilitate infection of the host organism, but on the other hand, they help the host to track down the microbe,” says Kaufmann.

What is special about the aryl hydrocarbon receptor is that it binds directly the bacterial pigments and then triggers the expression of several genes in the cell nucleus responsible for breaking down the virulence factors. To this end, it migrates from the outside into the interior of the nucleus where it binds to DNA.

The aryl hydrocarbon receptor is therefore a receptor and a transcription factor rolled into one and hence can react promptly to infection. By contrast, other receptors of the immune system have to rely on auxiliary proteins that relay the information about pathogens into the nucleus.

As a next step, the researchers want to find out what other transcription factors the aryl hydrocarbon receptor interacts with and what specific enzymes are responsible for breaking down the bacterial virulence factors.

Contact 

Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann

Max Planck Institute for Infection Biology, Berlin

Phone: +49 30 28460-500
Fax: +49 30 28460-501

 

Dr. Sabine Englich

Max Planck Institute for Infection Biology, Berlin

Phone: +49 30 28460-142

 

Original publication

 
Pedro Moura-Alves, Kellen Faé, Erica Houthuys, Anca Dorhoi, Annika Kreuchwig, Jens Furkert, Nicola Barison, Anne Diehl, Antje Munder, Patricia Constant, Tatsiana Skrahina, Ute Guhlich-Bornhof, Marion Klemm, Anne-Britta Koehler, Silke Bandermann, Christian Goosmann, Hans-Joachim Mollenkopf, Robert Hurwitz, Volker Brinkmann, Simon Fillatreau, Mamadou Daffe, Burkhard Tümmler, Michael Kolbe, Hartmut Oschkinat, Gerd Krause, Stefan H.E. Kaufmann
AhR sensing of bacterial pigments orchestrates antibacterial defense
Nature, 13 August 2014, Advance Online Publication (AOP), doi: 10.1038/nature13684

Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann | Max-Planck-Institute
Further information:
http://www.mpg.de/8356852/AhR-weapon-immune-system

Further reports about: Biology Infection damage pathogens receptor responsible toxins transcription

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>