Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tropical tree species await discovery

05.06.2015

A global analysis raises the minimum estimated number of tropical tree species to at least 40,000 to 53,000 worldwide in a paper appearing in Proceedings of the National Academy of Sciences, whose co-authors include researchers from the Center for Tropical Forest Science-Forest Global Earth Observatory (CTFS-ForestGEO) and the Smithsonian Tropical Research Institute (STRI).


Inga spiralis are plants in the bean family (Fabaceae) is only found in Panama. Many areas in the tropics have still never been thoroughly explored by botanists.

Courtesy of STRI/ Carmen Galdames

Many of these species risk extinction because of their rarity and restriction to small geographic areas, reaffirming the need for comprehensive, pan-tropical conservation efforts.

Although scientists could confidently say 'the tropics are diverse,' the answer to 'how diverse' still remains open to speculation. Tropical tree identification is notoriously difficult -- hampered by hard-to-access terrain and the sheer number of rare species.

Much of the data came from CTFS-ForestGEO study sites, where standardized pan-tropical survey methods create opportunities to much more accurately guage tropical diversity. By raising the estimated minimum number of tree species in the world, estimates for the number of insect and microbe species associated with tropical trees also increases, placing an even higher premium on protection of these forest ecosystems.

Co-author William Laurance, senior research associate at STRI and distinguished research professor at James Cook University, explains that the 'stunningly high tree diversity' of the tropics is represented by thousands of rare species, whose sparse populations may not be sustained in the long term by isolated protected areas. This study once again validates a strategy of making forest reserves as big as possible, and also trying to prevent their isolation from adjoining areas of forest.'

The study's lead author Ferry Slik, professor at Universiti Brunei Darussalam, collaborated with over 170 scientists from 126 institutions to study a dataset composed of 207 forested locations across tropical America, Africa and the Indo-Pacific.

Each forest plot contains at least 250 individual trees identified to species, ensuring comprehensive coverage of the total species diversity in each geographical area. Among their findings, the researchers note that, contrary to previous assumptions, the Indo-Pacific tropics contain as much species diversity as tropical America -- at least 19,000 species.

Both tropical America and the Indo-Pacific are about five times as species-rich as Africa, whose forests are hypothesized to have experienced extensive extinction events during the Pleistocene era of glaciation and climate change. All three regions contain distinct tree lineages reflecting unique evolutionary histories.

Researchers note that their calculations excluded some 10 percent of unidentifiable trees in a dataset comprising 657,630 individuals. Since these trees could reasonably represent rare or previously unknown species, there's a high likelihood that the world's estimates of total tree species diversity will keep increasing as more of the tropics are surveyed and studied. Laurance notes that the CTFS-ForestGEO network continues to grow, adding new forest plots not just for basic research but also, 'as barometers of the long-term effects of global change on forest communities.'

Meanwhile, as deforestation and development increase the extinction risk for many unique species, lessons may be learned from Africa's reduced tropical diversity. When forest areas shrink, rare species are usually the first to disappear. Consequently, even if the extinction pressure is eventually lifted, a much more limited palette of species remains to repopulate the region. While the tropics are vast and diverse, their individual components are irreplaceable.

###

The Center for Tropical Forest Science-Forest Global Earth Observatories (CTFS-ForestGEO) is a global network of forest research plots and scientists dedicated to the study of tropical and temperate forest function and diversity. The multi-institutional network comprises over 60 forest research plots across the Americas, Africa, Asia, and Europe, with a strong focus on tropical regions. CTFS-ForestGEO monitors the growth and survival of approximately 6 million trees and 10,000 species. http://www.ctfs.si.edu/

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu.

Reference: Ferry J. W. Slik, et al. 2015. An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences USA. DOI 10.1073/pnas.1423147112.

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

Further reports about: Tropical Research ecosystems species species diversity tree species tropical

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>