Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tropical tree species await discovery

05.06.2015

A global analysis raises the minimum estimated number of tropical tree species to at least 40,000 to 53,000 worldwide in a paper appearing in Proceedings of the National Academy of Sciences, whose co-authors include researchers from the Center for Tropical Forest Science-Forest Global Earth Observatory (CTFS-ForestGEO) and the Smithsonian Tropical Research Institute (STRI).


Inga spiralis are plants in the bean family (Fabaceae) is only found in Panama. Many areas in the tropics have still never been thoroughly explored by botanists.

Courtesy of STRI/ Carmen Galdames

Many of these species risk extinction because of their rarity and restriction to small geographic areas, reaffirming the need for comprehensive, pan-tropical conservation efforts.

Although scientists could confidently say 'the tropics are diverse,' the answer to 'how diverse' still remains open to speculation. Tropical tree identification is notoriously difficult -- hampered by hard-to-access terrain and the sheer number of rare species.

Much of the data came from CTFS-ForestGEO study sites, where standardized pan-tropical survey methods create opportunities to much more accurately guage tropical diversity. By raising the estimated minimum number of tree species in the world, estimates for the number of insect and microbe species associated with tropical trees also increases, placing an even higher premium on protection of these forest ecosystems.

Co-author William Laurance, senior research associate at STRI and distinguished research professor at James Cook University, explains that the 'stunningly high tree diversity' of the tropics is represented by thousands of rare species, whose sparse populations may not be sustained in the long term by isolated protected areas. This study once again validates a strategy of making forest reserves as big as possible, and also trying to prevent their isolation from adjoining areas of forest.'

The study's lead author Ferry Slik, professor at Universiti Brunei Darussalam, collaborated with over 170 scientists from 126 institutions to study a dataset composed of 207 forested locations across tropical America, Africa and the Indo-Pacific.

Each forest plot contains at least 250 individual trees identified to species, ensuring comprehensive coverage of the total species diversity in each geographical area. Among their findings, the researchers note that, contrary to previous assumptions, the Indo-Pacific tropics contain as much species diversity as tropical America -- at least 19,000 species.

Both tropical America and the Indo-Pacific are about five times as species-rich as Africa, whose forests are hypothesized to have experienced extensive extinction events during the Pleistocene era of glaciation and climate change. All three regions contain distinct tree lineages reflecting unique evolutionary histories.

Researchers note that their calculations excluded some 10 percent of unidentifiable trees in a dataset comprising 657,630 individuals. Since these trees could reasonably represent rare or previously unknown species, there's a high likelihood that the world's estimates of total tree species diversity will keep increasing as more of the tropics are surveyed and studied. Laurance notes that the CTFS-ForestGEO network continues to grow, adding new forest plots not just for basic research but also, 'as barometers of the long-term effects of global change on forest communities.'

Meanwhile, as deforestation and development increase the extinction risk for many unique species, lessons may be learned from Africa's reduced tropical diversity. When forest areas shrink, rare species are usually the first to disappear. Consequently, even if the extinction pressure is eventually lifted, a much more limited palette of species remains to repopulate the region. While the tropics are vast and diverse, their individual components are irreplaceable.

###

The Center for Tropical Forest Science-Forest Global Earth Observatories (CTFS-ForestGEO) is a global network of forest research plots and scientists dedicated to the study of tropical and temperate forest function and diversity. The multi-institutional network comprises over 60 forest research plots across the Americas, Africa, Asia, and Europe, with a strong focus on tropical regions. CTFS-ForestGEO monitors the growth and survival of approximately 6 million trees and 10,000 species. http://www.ctfs.si.edu/

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu.

Reference: Ferry J. W. Slik, et al. 2015. An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences USA. DOI 10.1073/pnas.1423147112.

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

Further reports about: Tropical Research ecosystems species species diversity tree species tropical

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>